Solve for x (complex solution)
\left\{\begin{matrix}\\x=-py\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&p=1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=-py\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&p=1\end{matrix}\right.
Solve for p (complex solution)
\left\{\begin{matrix}\\p=1\text{, }&\text{unconditionally}\\p=-\frac{x}{y}\text{, }&y\neq 0\\p\in \mathrm{C}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Solve for p
\left\{\begin{matrix}\\p=1\text{, }&\text{unconditionally}\\p=-\frac{x}{y}\text{, }&y\neq 0\\p\in \mathrm{R}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
yp^{2}+xp-yp-x=0
Use the distributive property to multiply x-y by p.
xp-yp-x=-yp^{2}
Subtract yp^{2} from both sides. Anything subtracted from zero gives its negation.
xp-x=-yp^{2}+yp
Add yp to both sides.
px-x=py-yp^{2}
Reorder the terms.
\left(p-1\right)x=py-yp^{2}
Combine all terms containing x.
\frac{\left(p-1\right)x}{p-1}=\frac{py\left(1-p\right)}{p-1}
Divide both sides by -1+p.
x=\frac{py\left(1-p\right)}{p-1}
Dividing by -1+p undoes the multiplication by -1+p.
x=-py
Divide yp\left(1-p\right) by -1+p.
yp^{2}+xp-yp-x=0
Use the distributive property to multiply x-y by p.
xp-yp-x=-yp^{2}
Subtract yp^{2} from both sides. Anything subtracted from zero gives its negation.
xp-x=-yp^{2}+yp
Add yp to both sides.
px-x=py-yp^{2}
Reorder the terms.
\left(p-1\right)x=py-yp^{2}
Combine all terms containing x.
\frac{\left(p-1\right)x}{p-1}=\frac{py\left(1-p\right)}{p-1}
Divide both sides by -1+p.
x=\frac{py\left(1-p\right)}{p-1}
Dividing by -1+p undoes the multiplication by -1+p.
x=-py
Divide yp\left(1-p\right) by -1+p.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}