Solve for p
\left\{\begin{matrix}p=\frac{x^{2}}{y\left(D+1\right)^{3}e^{x_{1}}}\text{, }&D\neq -1\text{ and }y\neq 0\\p\in \mathrm{R}\text{, }&x=0\text{ and }y=0\text{ and }D\neq -1\end{matrix}\right.
Solve for D
\left\{\begin{matrix}D=\frac{x^{\frac{2}{3}}e^{-\frac{x_{1}}{3}}}{\sqrt[3]{py}}-1\text{, }&x\neq 0\text{ and }p\neq 0\text{ and }y\neq 0\\D\neq -1\text{, }&\left(y=0\text{ or }p=0\right)\text{ and }x=0\end{matrix}\right.
Graph
Quiz
Algebra
5 problems similar to:
y p = \frac { e ^ { - x _ { 1 } } } { ( D + 1 ) ^ { 3 } } x ^ { 2 }
Share
Copied to clipboard
yp\left(D+1\right)^{3}=e^{-x_{1}}x^{2}
Multiply both sides of the equation by \left(D+1\right)^{3}.
yp\left(D^{3}+3D^{2}+3D+1\right)=e^{-x_{1}}x^{2}
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(D+1\right)^{3}.
ypD^{3}+3ypD^{2}+3ypD+yp=e^{-x_{1}}x^{2}
Use the distributive property to multiply yp by D^{3}+3D^{2}+3D+1.
\left(yD^{3}+3yD^{2}+3yD+y\right)p=e^{-x_{1}}x^{2}
Combine all terms containing p.
\left(yD^{3}+3yD^{2}+3Dy+y\right)p=\frac{x^{2}}{e^{x_{1}}}
The equation is in standard form.
\frac{\left(yD^{3}+3yD^{2}+3Dy+y\right)p}{yD^{3}+3yD^{2}+3Dy+y}=\frac{x^{2}}{e^{x_{1}}\left(yD^{3}+3yD^{2}+3Dy+y\right)}
Divide both sides by yD^{3}+3yD^{2}+3yD+y.
p=\frac{x^{2}}{e^{x_{1}}\left(yD^{3}+3yD^{2}+3Dy+y\right)}
Dividing by yD^{3}+3yD^{2}+3yD+y undoes the multiplication by yD^{3}+3yD^{2}+3yD+y.
p=\frac{x^{2}}{y\left(D+1\right)^{3}e^{x_{1}}}
Divide \frac{x^{2}}{e^{x_{1}}} by yD^{3}+3yD^{2}+3yD+y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}