Skip to main content
Solve for p
Tick mark Image
Solve for D
Tick mark Image
Graph

Similar Problems from Web Search

Share

yp\left(D+1\right)^{3}=e^{-x_{1}}x^{2}
Multiply both sides of the equation by \left(D+1\right)^{3}.
yp\left(D^{3}+3D^{2}+3D+1\right)=e^{-x_{1}}x^{2}
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(D+1\right)^{3}.
ypD^{3}+3ypD^{2}+3ypD+yp=e^{-x_{1}}x^{2}
Use the distributive property to multiply yp by D^{3}+3D^{2}+3D+1.
\left(yD^{3}+3yD^{2}+3yD+y\right)p=e^{-x_{1}}x^{2}
Combine all terms containing p.
\left(yD^{3}+3yD^{2}+3Dy+y\right)p=\frac{x^{2}}{e^{x_{1}}}
The equation is in standard form.
\frac{\left(yD^{3}+3yD^{2}+3Dy+y\right)p}{yD^{3}+3yD^{2}+3Dy+y}=\frac{x^{2}}{e^{x_{1}}\left(yD^{3}+3yD^{2}+3Dy+y\right)}
Divide both sides by yD^{3}+3yD^{2}+3yD+y.
p=\frac{x^{2}}{e^{x_{1}}\left(yD^{3}+3yD^{2}+3Dy+y\right)}
Dividing by yD^{3}+3yD^{2}+3yD+y undoes the multiplication by yD^{3}+3yD^{2}+3yD+y.
p=\frac{x^{2}}{y\left(D+1\right)^{3}e^{x_{1}}}
Divide \frac{x^{2}}{e^{x_{1}}} by yD^{3}+3yD^{2}+3yD+y.