Solve for y
y=\frac{c_{1}e^{x}}{3}+\frac{xe^{x}}{3}+\frac{С}{e^{2x}}-\frac{e^{x}}{9}
Solve for c_1
\left\{\begin{matrix}c_{1}=\frac{С}{xe^{3x}}+\frac{y}{xe^{x}}-x\text{, }&x\neq 0\\c_{1}\in \mathrm{R}\text{, }&y=С\text{ and }x=0\end{matrix}\right.
Share
Copied to clipboard
ye^{2x}=\int e^{2x}xe^{x}+e^{2x}c_{1}e^{x}\mathrm{d}x
Use the distributive property to multiply e^{2x} by xe^{x}+c_{1}e^{x}.
e^{2x}y=\frac{c_{1}e^{3x}}{3}+\frac{xe^{3x}}{3}-\frac{e^{3x}}{9}+С
The equation is in standard form.
\frac{e^{2x}y}{e^{2x}}=\frac{\frac{c_{1}e^{3x}}{3}+\frac{xe^{3x}}{3}-\frac{e^{3x}}{9}+С}{e^{2x}}
Divide both sides by e^{2x}.
y=\frac{\frac{c_{1}e^{3x}}{3}+\frac{xe^{3x}}{3}-\frac{e^{3x}}{9}+С}{e^{2x}}
Dividing by e^{2x} undoes the multiplication by e^{2x}.
y=\frac{c_{1}e^{x}}{3}+\frac{xe^{x}}{3}+\frac{С}{e^{2x}}-\frac{e^{x}}{9}
Divide \frac{e^{3x}x}{3}-\frac{e^{3x}}{9}+\frac{c_{1}e^{3x}}{3}+С by e^{2x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}