Skip to main content
Solve for y
Tick mark Image
Solve for c_1
Tick mark Image

Similar Problems from Web Search

Share

ye^{2x}=\int e^{2x}xe^{x}+e^{2x}c_{1}e^{x}\mathrm{d}x
Use the distributive property to multiply e^{2x} by xe^{x}+c_{1}e^{x}.
e^{2x}y=\frac{c_{1}e^{3x}}{3}+\frac{xe^{3x}}{3}-\frac{e^{3x}}{9}+С
The equation is in standard form.
\frac{e^{2x}y}{e^{2x}}=\frac{\frac{c_{1}e^{3x}}{3}+\frac{xe^{3x}}{3}-\frac{e^{3x}}{9}+С}{e^{2x}}
Divide both sides by e^{2x}.
y=\frac{\frac{c_{1}e^{3x}}{3}+\frac{xe^{3x}}{3}-\frac{e^{3x}}{9}+С}{e^{2x}}
Dividing by e^{2x} undoes the multiplication by e^{2x}.
y=\frac{c_{1}e^{x}}{3}+\frac{xe^{x}}{3}+\frac{С}{e^{2x}}-\frac{e^{x}}{9}
Divide \frac{e^{3x}x}{3}-\frac{e^{3x}}{9}+\frac{c_{1}e^{3x}}{3}+С by e^{2x}.