y d y = \int - x d x
Solve for d (complex solution)
\left\{\begin{matrix}d=-\frac{\left(\frac{x}{y}\right)^{2}}{2}+\frac{С}{y^{2}}\text{, }&y\neq 0\\d\in \mathrm{C}\text{, }&С=-\frac{x^{2}}{2}\text{ and }y=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=-\frac{\left(\frac{x}{y}\right)^{2}}{2}+\frac{С}{y^{2}}\text{, }&y\neq 0\\d\in \mathrm{R}\text{, }&С=-\frac{x^{2}}{2}\text{ and }y=0\end{matrix}\right.
Solve for y (complex solution)
\left\{\begin{matrix}y=-\frac{id^{-\frac{1}{2}}\sqrt{2x^{2}+С}}{2}\text{; }y=\frac{id^{-\frac{1}{2}}\sqrt{2x^{2}+С}}{2}\text{, }&d\neq 0\\y\in \mathrm{C}\text{, }&С=-\frac{x^{2}}{2}\text{ and }d=0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=\frac{\sqrt{\frac{4С-2x^{2}}{d}}}{2}\text{; }y=-\frac{\sqrt{\frac{4С-2x^{2}}{d}}}{2}\text{, }&\left(d<0\text{ or }С\geq \frac{x^{2}}{2}\right)\text{ and }\left(d>0\text{ or }С_{1}\leq \frac{x^{2}}{2}\right)\text{ and }d\neq 0\\y\in \mathrm{R}\text{, }&С=-\frac{x^{2}}{2}\text{ and }d=0\end{matrix}\right.
Share
Copied to clipboard
y^{2}d=\int -x\mathrm{d}x
Multiply y and y to get y^{2}.
y^{2}d=-\frac{x^{2}}{2}+С
The equation is in standard form.
\frac{y^{2}d}{y^{2}}=\frac{-\frac{x^{2}}{2}+С}{y^{2}}
Divide both sides by y^{2}.
d=\frac{-\frac{x^{2}}{2}+С}{y^{2}}
Dividing by y^{2} undoes the multiplication by y^{2}.
y^{2}d=\int -x\mathrm{d}x
Multiply y and y to get y^{2}.
y^{2}d=-\frac{x^{2}}{2}+С
The equation is in standard form.
\frac{y^{2}d}{y^{2}}=\frac{-\frac{x^{2}}{2}+С}{y^{2}}
Divide both sides by y^{2}.
d=\frac{-\frac{x^{2}}{2}+С}{y^{2}}
Dividing by y^{2} undoes the multiplication by y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}