y d x - 4 x d y = y ^ { 6 } d y
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x=-\frac{y^{6}}{3}\text{ or }y=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=-\frac{y^{6}}{3}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&d=0\text{ or }y=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x=-\frac{y^{6}}{3}\text{ or }y=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=-\frac{y^{6}}{3}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&d=0\text{ or }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
ydx-4xdy=y^{7}d
To multiply powers of the same base, add their exponents. Add 6 and 1 to get 7.
-3ydx=y^{7}d
Combine ydx and -4xdy to get -3ydx.
-3ydx-y^{7}d=0
Subtract y^{7}d from both sides.
-3dxy-dy^{7}=0
Reorder the terms.
\left(-3xy-y^{7}\right)d=0
Combine all terms containing d.
d=0
Divide 0 by -3xy-y^{7}.
ydx-4xdy=y^{7}d
To multiply powers of the same base, add their exponents. Add 6 and 1 to get 7.
-3ydx=y^{7}d
Combine ydx and -4xdy to get -3ydx.
\left(-3dy\right)x=dy^{7}
The equation is in standard form.
\frac{\left(-3dy\right)x}{-3dy}=\frac{dy^{7}}{-3dy}
Divide both sides by -3yd.
x=\frac{dy^{7}}{-3dy}
Dividing by -3yd undoes the multiplication by -3yd.
x=-\frac{y^{6}}{3}
Divide y^{7}d by -3yd.
ydx-4xdy=y^{7}d
To multiply powers of the same base, add their exponents. Add 6 and 1 to get 7.
-3ydx=y^{7}d
Combine ydx and -4xdy to get -3ydx.
-3ydx-y^{7}d=0
Subtract y^{7}d from both sides.
-3dxy-dy^{7}=0
Reorder the terms.
\left(-3xy-y^{7}\right)d=0
Combine all terms containing d.
d=0
Divide 0 by -3xy-y^{7}.
ydx-4xdy=y^{7}d
To multiply powers of the same base, add their exponents. Add 6 and 1 to get 7.
-3ydx=y^{7}d
Combine ydx and -4xdy to get -3ydx.
\left(-3dy\right)x=dy^{7}
The equation is in standard form.
\frac{\left(-3dy\right)x}{-3dy}=\frac{dy^{7}}{-3dy}
Divide both sides by -3yd.
x=\frac{dy^{7}}{-3dy}
Dividing by -3yd undoes the multiplication by -3yd.
x=-\frac{y^{6}}{3}
Divide y^{7}d by -3yd.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}