Solve for x (complex solution)
x=\frac{y_{x}^{\alpha }+16}{24}
Solve for x
x=\frac{y_{x}^{\alpha }+16}{24}
\left(y_{x}<0\text{ and }Denominator(\alpha )\text{bmod}2=1\right)\text{ or }\left(y_{x}=0\text{ and }\alpha >0\right)\text{ or }y_{x}>0
Solve for y_x (complex solution)
y_{x}=e^{\frac{Im(\alpha )arg(-8\left(2-3x\right))+iRe(\alpha )arg(-8\left(2-3x\right))}{\left(Re(\alpha )\right)^{2}+\left(Im(\alpha )\right)^{2}}-\frac{2iRe(\alpha )\pi n_{1}}{\left(Re(\alpha )\right)^{2}+\left(Im(\alpha )\right)^{2}}-\frac{2\pi n_{1}Im(\alpha )}{\left(Re(\alpha )\right)^{2}+\left(Im(\alpha )\right)^{2}}}\left(|8\left(2-3x\right)|\right)^{\frac{Re(\alpha )-iIm(\alpha )}{\left(Re(\alpha )\right)^{2}+\left(Im(\alpha )\right)^{2}}}
n_{1}\in \mathrm{Z}
Solve for y_x
\left\{\begin{matrix}y_{x}=\left(24x-16\right)^{\frac{1}{\alpha }}\text{, }&\left(Numerator(\alpha )\text{bmod}2=1\text{ and }Denominator(\alpha )\text{bmod}2=1\text{ and }x<\frac{2}{3}\text{ and }\left(24x-16\right)^{\frac{1}{\alpha }}\neq 0\right)\text{ or }\left(\left(24x-16\right)^{\frac{1}{\alpha }}<0\text{ and }x>\frac{2}{3}\text{ and }\alpha \neq 0\text{ and }Denominator(\alpha )\text{bmod}2=1\right)\text{ or }\left(\alpha >0\text{ and }x=\frac{2}{3}\right)\text{ or }\left(\left(24x-16\right)^{\frac{1}{\alpha }}>0\text{ and }x>\frac{2}{3}\text{ and }\alpha \neq 0\right)\\y_{x}=-\left(24x-16\right)^{\frac{1}{\alpha }}\text{, }&\left(x<\frac{2}{3}\text{ and }Numerator(\alpha )\text{bmod}2=1\text{ and }Numerator(\alpha )\text{bmod}2=0\text{ and }Denominator(\alpha )\text{bmod}2=1\text{ and }\left(24x-16\right)^{\frac{1}{\alpha }}\neq 0\right)\text{ or }\left(x>\frac{2}{3}\text{ and }\alpha \neq 0\text{ and }\left(24x-16\right)^{\frac{1}{\alpha }}>0\text{ and }Numerator(\alpha )\text{bmod}2=0\text{ and }Denominator(\alpha )\text{bmod}2=1\right)\text{ or }\left(Numerator(\alpha )\text{bmod}2=0\text{ and }x=\frac{2}{3}\text{ and }\alpha >0\right)\text{ or }\left(x>\frac{2}{3}\text{ and }\alpha \neq 0\text{ and }\left(24x-16\right)^{\frac{1}{\alpha }}<0\text{ and }Numerator(\alpha )\text{bmod}2=0\right)\\y_{x}\neq 0\text{, }&\alpha =0\text{ and }x=\frac{17}{24}\end{matrix}\right.
Graph
Share
Copied to clipboard
-24x+16=-y_{x}^{\alpha }
Subtract y_{x}^{\alpha } from both sides. Anything subtracted from zero gives its negation.
-24x=-y_{x}^{\alpha }-16
Subtract 16 from both sides.
\frac{-24x}{-24}=\frac{-y_{x}^{\alpha }-16}{-24}
Divide both sides by -24.
x=\frac{-y_{x}^{\alpha }-16}{-24}
Dividing by -24 undoes the multiplication by -24.
x=\frac{y_{x}^{\alpha }}{24}+\frac{2}{3}
Divide -y_{x}^{\alpha }-16 by -24.
-24x+16=-y_{x}^{\alpha }
Subtract y_{x}^{\alpha } from both sides. Anything subtracted from zero gives its negation.
-24x=-y_{x}^{\alpha }-16
Subtract 16 from both sides.
\frac{-24x}{-24}=\frac{-y_{x}^{\alpha }-16}{-24}
Divide both sides by -24.
x=\frac{-y_{x}^{\alpha }-16}{-24}
Dividing by -24 undoes the multiplication by -24.
x=\frac{y_{x}^{\alpha }}{24}+\frac{2}{3}
Divide -y_{x}^{\alpha }-16 by -24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}