Solve for j
j=\frac{8\left(y_{j}-225\right)}{7}
Solve for y_j
y_{j}=\frac{7j}{8}+225
Share
Copied to clipboard
8y_{j}-1736=7j+64
Multiply both sides of the equation by 8.
7j+64=8y_{j}-1736
Swap sides so that all variable terms are on the left hand side.
7j=8y_{j}-1736-64
Subtract 64 from both sides.
7j=8y_{j}-1800
Subtract 64 from -1736 to get -1800.
\frac{7j}{7}=\frac{8y_{j}-1800}{7}
Divide both sides by 7.
j=\frac{8y_{j}-1800}{7}
Dividing by 7 undoes the multiplication by 7.
8y_{j}-1736=7j+64
Multiply both sides of the equation by 8.
8y_{j}=7j+64+1736
Add 1736 to both sides.
8y_{j}=7j+1800
Add 64 and 1736 to get 1800.
\frac{8y_{j}}{8}=\frac{7j+1800}{8}
Divide both sides by 8.
y_{j}=\frac{7j+1800}{8}
Dividing by 8 undoes the multiplication by 8.
y_{j}=\frac{7j}{8}+225
Divide 7j+1800 by 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}