Solve for x_n
x_{n}=\frac{50y_{R}}{73}+\frac{2527}{3650}
Solve for y_R
y_{R}=\frac{73x_{n}}{50}-1.0108
Share
Copied to clipboard
1.46x_{n}-0.0108=y_{R}+1
Swap sides so that all variable terms are on the left hand side.
1.46x_{n}=y_{R}+1+0.0108
Add 0.0108 to both sides.
1.46x_{n}=y_{R}+1.0108
Add 1 and 0.0108 to get 1.0108.
\frac{1.46x_{n}}{1.46}=\frac{y_{R}+1.0108}{1.46}
Divide both sides of the equation by 1.46, which is the same as multiplying both sides by the reciprocal of the fraction.
x_{n}=\frac{y_{R}+1.0108}{1.46}
Dividing by 1.46 undoes the multiplication by 1.46.
x_{n}=\frac{50y_{R}}{73}+\frac{2527}{3650}
Divide y_{R}+1.0108 by 1.46 by multiplying y_{R}+1.0108 by the reciprocal of 1.46.
y_{R}=1.46x_{n}-0.0108-1
Subtract 1 from both sides.
y_{R}=1.46x_{n}-1.0108
Subtract 1 from -0.0108 to get -1.0108.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}