y _ { 6 } + 28 \% x = x
Solve for x
x=\frac{25y_{6}}{18}
Solve for y_6
y_{6}=\frac{18x}{25}
Graph
Share
Copied to clipboard
y_{6}+\frac{7}{25}x=x
Reduce the fraction \frac{28}{100} to lowest terms by extracting and canceling out 4.
y_{6}+\frac{7}{25}x-x=0
Subtract x from both sides.
y_{6}-\frac{18}{25}x=0
Combine \frac{7}{25}x and -x to get -\frac{18}{25}x.
-\frac{18}{25}x=-y_{6}
Subtract y_{6} from both sides. Anything subtracted from zero gives its negation.
\frac{-\frac{18}{25}x}{-\frac{18}{25}}=-\frac{y_{6}}{-\frac{18}{25}}
Divide both sides of the equation by -\frac{18}{25}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{y_{6}}{-\frac{18}{25}}
Dividing by -\frac{18}{25} undoes the multiplication by -\frac{18}{25}.
x=\frac{25y_{6}}{18}
Divide -y_{6} by -\frac{18}{25} by multiplying -y_{6} by the reciprocal of -\frac{18}{25}.
y_{6}+\frac{7}{25}x=x
Reduce the fraction \frac{28}{100} to lowest terms by extracting and canceling out 4.
y_{6}=x-\frac{7}{25}x
Subtract \frac{7}{25}x from both sides.
y_{6}=\frac{18}{25}x
Combine x and -\frac{7}{25}x to get \frac{18}{25}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}