Solve for y_1
y_{1}=-\frac{4x^{4}}{\left(x-5\right)^{2}}
x\neq 5
Graph
Quiz
Linear Equation
5 problems similar to:
y _ { 1 } \frac { ( 5 - x ) ^ { 2 } } { 2 } = - 2 x ^ { 4 }
Share
Copied to clipboard
y_{1}\left(5-x\right)^{2}=-4x^{4}
Multiply both sides of the equation by 2.
y_{1}\left(25-10x+x^{2}\right)=-4x^{4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-x\right)^{2}.
25y_{1}-10y_{1}x+y_{1}x^{2}=-4x^{4}
Use the distributive property to multiply y_{1} by 25-10x+x^{2}.
\left(25-10x+x^{2}\right)y_{1}=-4x^{4}
Combine all terms containing y_{1}.
\left(x^{2}-10x+25\right)y_{1}=-4x^{4}
The equation is in standard form.
\frac{\left(x^{2}-10x+25\right)y_{1}}{x^{2}-10x+25}=-\frac{4x^{4}}{x^{2}-10x+25}
Divide both sides by 25-10x+x^{2}.
y_{1}=-\frac{4x^{4}}{x^{2}-10x+25}
Dividing by 25-10x+x^{2} undoes the multiplication by 25-10x+x^{2}.
y_{1}=-\frac{4x^{4}}{\left(x-5\right)^{2}}
Divide -4x^{4} by 25-10x+x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}