Skip to main content
Solve for y_1
Tick mark Image
Graph

Similar Problems from Web Search

Share

y_{1}\left(5-x\right)^{2}=-4x^{4}
Multiply both sides of the equation by 2.
y_{1}\left(25-10x+x^{2}\right)=-4x^{4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-x\right)^{2}.
25y_{1}-10y_{1}x+y_{1}x^{2}=-4x^{4}
Use the distributive property to multiply y_{1} by 25-10x+x^{2}.
\left(25-10x+x^{2}\right)y_{1}=-4x^{4}
Combine all terms containing y_{1}.
\left(x^{2}-10x+25\right)y_{1}=-4x^{4}
The equation is in standard form.
\frac{\left(x^{2}-10x+25\right)y_{1}}{x^{2}-10x+25}=-\frac{4x^{4}}{x^{2}-10x+25}
Divide both sides by 25-10x+x^{2}.
y_{1}=-\frac{4x^{4}}{x^{2}-10x+25}
Dividing by 25-10x+x^{2} undoes the multiplication by 25-10x+x^{2}.
y_{1}=-\frac{4x^{4}}{\left(x-5\right)^{2}}
Divide -4x^{4} by 25-10x+x^{2}.