Solve for y_0
y_{0}=\sqrt{3}
y_{0}=-\sqrt{3}
Solve for x_0 (complex solution)
x_{0}\in \mathrm{C}
y_{0}=-\sqrt{3}\text{ or }y_{0}=\sqrt{3}
Solve for x_0
x_{0}\in \mathrm{R}
|y_{0}|=\sqrt{3}
Share
Copied to clipboard
y_{0}^{2}=3x_{0}-3\left(x_{0}+2\right)\left(x_{0}-1\right)+3x_{0}^{2}-3
Multiply -1 and 3 to get -3.
y_{0}^{2}=3x_{0}+\left(-3x_{0}-6\right)\left(x_{0}-1\right)+3x_{0}^{2}-3
Use the distributive property to multiply -3 by x_{0}+2.
y_{0}^{2}=3x_{0}-3x_{0}^{2}-3x_{0}+6+3x_{0}^{2}-3
Use the distributive property to multiply -3x_{0}-6 by x_{0}-1 and combine like terms.
y_{0}^{2}=-3x_{0}^{2}+6+3x_{0}^{2}-3
Combine 3x_{0} and -3x_{0} to get 0.
y_{0}^{2}=6-3
Combine -3x_{0}^{2} and 3x_{0}^{2} to get 0.
y_{0}^{2}=3
Subtract 3 from 6 to get 3.
y_{0}=\sqrt{3} y_{0}=-\sqrt{3}
Take the square root of both sides of the equation.
y_{0}^{2}-\left(3x_{0}-3\left(x_{0}+2\right)\left(x_{0}-1\right)\right)=3x_{0}^{2}-3
Subtract 3x_{0}-3\left(x_{0}+2\right)\left(x_{0}-1\right) from both sides.
y_{0}^{2}-\left(3x_{0}-3\left(x_{0}+2\right)\left(x_{0}-1\right)\right)-3x_{0}^{2}=-3
Subtract 3x_{0}^{2} from both sides.
y_{0}^{2}-\left(3x_{0}-3\left(x_{0}+2\right)\left(x_{0}-1\right)\right)-3x_{0}^{2}+3=0
Add 3 to both sides.
y_{0}^{2}-\left(3x_{0}+\left(-3x_{0}-6\right)\left(x_{0}-1\right)\right)-3x_{0}^{2}+3=0
Use the distributive property to multiply -3 by x_{0}+2.
y_{0}^{2}-\left(3x_{0}-3x_{0}^{2}-3x_{0}+6\right)-3x_{0}^{2}+3=0
Use the distributive property to multiply -3x_{0}-6 by x_{0}-1 and combine like terms.
y_{0}^{2}-\left(-3x_{0}^{2}+6\right)-3x_{0}^{2}+3=0
Combine 3x_{0} and -3x_{0} to get 0.
y_{0}^{2}+3x_{0}^{2}-6-3x_{0}^{2}+3=0
To find the opposite of -3x_{0}^{2}+6, find the opposite of each term.
y_{0}^{2}-6+3=0
Combine 3x_{0}^{2} and -3x_{0}^{2} to get 0.
y_{0}^{2}-3=0
Add -6 and 3 to get -3.
y_{0}=\frac{0±\sqrt{0^{2}-4\left(-3\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y_{0}=\frac{0±\sqrt{-4\left(-3\right)}}{2}
Square 0.
y_{0}=\frac{0±\sqrt{12}}{2}
Multiply -4 times -3.
y_{0}=\frac{0±2\sqrt{3}}{2}
Take the square root of 12.
y_{0}=\sqrt{3}
Now solve the equation y_{0}=\frac{0±2\sqrt{3}}{2} when ± is plus.
y_{0}=-\sqrt{3}
Now solve the equation y_{0}=\frac{0±2\sqrt{3}}{2} when ± is minus.
y_{0}=\sqrt{3} y_{0}=-\sqrt{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}