Solve for y_0
y_{0} = -\frac{27}{8} = -3\frac{3}{8} = -3.375
Assign y_0
y_{0}≔-\frac{27}{8}
Share
Copied to clipboard
y_{0}=\frac{-2\times 25}{16}-\frac{25}{4}+6
Express -2\times \frac{25}{16} as a single fraction.
y_{0}=\frac{-50}{16}-\frac{25}{4}+6
Multiply -2 and 25 to get -50.
y_{0}=-\frac{25}{8}-\frac{25}{4}+6
Reduce the fraction \frac{-50}{16} to lowest terms by extracting and canceling out 2.
y_{0}=-\frac{25}{8}-\frac{50}{8}+6
Least common multiple of 8 and 4 is 8. Convert -\frac{25}{8} and \frac{25}{4} to fractions with denominator 8.
y_{0}=\frac{-25-50}{8}+6
Since -\frac{25}{8} and \frac{50}{8} have the same denominator, subtract them by subtracting their numerators.
y_{0}=-\frac{75}{8}+6
Subtract 50 from -25 to get -75.
y_{0}=-\frac{75}{8}+\frac{48}{8}
Convert 6 to fraction \frac{48}{8}.
y_{0}=\frac{-75+48}{8}
Since -\frac{75}{8} and \frac{48}{8} have the same denominator, add them by adding their numerators.
y_{0}=-\frac{27}{8}
Add -75 and 48 to get -27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}