Skip to main content
Solve for M
Tick mark Image
Solve for a
Tick mark Image
Graph

Similar Problems from Web Search

Share

yM\times 2ab\left(a^{2}+b^{2}\right)=\left(a^{2}+b^{2}\right)^{2}-\left(a^{2}-b^{2}\right)^{2}
Multiply both sides of the equation by 2ab\left(a^{2}+b^{2}\right).
2yMba^{3}+2yMab^{3}=\left(a^{2}+b^{2}\right)^{2}-\left(a^{2}-b^{2}\right)^{2}
Use the distributive property to multiply yM\times 2ab by a^{2}+b^{2}.
2yMba^{3}+2yMab^{3}=\left(a^{2}\right)^{2}+2a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-b^{2}\right)^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a^{2}+b^{2}\right)^{2}.
2yMba^{3}+2yMab^{3}=a^{4}+2a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-b^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2yMba^{3}+2yMab^{3}=a^{4}+2a^{2}b^{2}+b^{4}-\left(a^{2}-b^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2yMba^{3}+2yMab^{3}=a^{4}+2a^{2}b^{2}+b^{4}-\left(\left(a^{2}\right)^{2}-2a^{2}b^{2}+\left(b^{2}\right)^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a^{2}-b^{2}\right)^{2}.
2yMba^{3}+2yMab^{3}=a^{4}+2a^{2}b^{2}+b^{4}-\left(a^{4}-2a^{2}b^{2}+\left(b^{2}\right)^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2yMba^{3}+2yMab^{3}=a^{4}+2a^{2}b^{2}+b^{4}-\left(a^{4}-2a^{2}b^{2}+b^{4}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2yMba^{3}+2yMab^{3}=a^{4}+2a^{2}b^{2}+b^{4}-a^{4}+2a^{2}b^{2}-b^{4}
To find the opposite of a^{4}-2a^{2}b^{2}+b^{4}, find the opposite of each term.
2yMba^{3}+2yMab^{3}=2a^{2}b^{2}+b^{4}+2a^{2}b^{2}-b^{4}
Combine a^{4} and -a^{4} to get 0.
2yMba^{3}+2yMab^{3}=4a^{2}b^{2}+b^{4}-b^{4}
Combine 2a^{2}b^{2} and 2a^{2}b^{2} to get 4a^{2}b^{2}.
2yMba^{3}+2yMab^{3}=4a^{2}b^{2}
Combine b^{4} and -b^{4} to get 0.
\left(2yba^{3}+2yab^{3}\right)M=4a^{2}b^{2}
Combine all terms containing M.
\left(2ayb^{3}+2bya^{3}\right)M=4a^{2}b^{2}
The equation is in standard form.
\frac{\left(2ayb^{3}+2bya^{3}\right)M}{2ayb^{3}+2bya^{3}}=\frac{4a^{2}b^{2}}{2ayb^{3}+2bya^{3}}
Divide both sides by 2yba^{3}+2yab^{3}.
M=\frac{4a^{2}b^{2}}{2ayb^{3}+2bya^{3}}
Dividing by 2yba^{3}+2yab^{3} undoes the multiplication by 2yba^{3}+2yab^{3}.
M=\frac{2ab}{y\left(a^{2}+b^{2}\right)}
Divide 4a^{2}b^{2} by 2yba^{3}+2yab^{3}.