Solve for M
M=\frac{2ab}{y\left(a^{2}+b^{2}\right)}
a\neq 0\text{ and }y\neq 0\text{ and }b\neq 0
Solve for a
a=\frac{b\left(\sqrt{1-\left(My\right)^{2}}+1\right)}{My}
a=\frac{b\left(-\sqrt{1-\left(My\right)^{2}}+1\right)}{My}\text{, }y\neq 0\text{ and }b\neq 0\text{ and }M\neq 0\text{ and }|y|\leq \frac{1}{|M|}
Graph
Share
Copied to clipboard
yM\times 2ab\left(a^{2}+b^{2}\right)=\left(a^{2}+b^{2}\right)^{2}-\left(a^{2}-b^{2}\right)^{2}
Multiply both sides of the equation by 2ab\left(a^{2}+b^{2}\right).
2yMba^{3}+2yMab^{3}=\left(a^{2}+b^{2}\right)^{2}-\left(a^{2}-b^{2}\right)^{2}
Use the distributive property to multiply yM\times 2ab by a^{2}+b^{2}.
2yMba^{3}+2yMab^{3}=\left(a^{2}\right)^{2}+2a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-b^{2}\right)^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a^{2}+b^{2}\right)^{2}.
2yMba^{3}+2yMab^{3}=a^{4}+2a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-b^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2yMba^{3}+2yMab^{3}=a^{4}+2a^{2}b^{2}+b^{4}-\left(a^{2}-b^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2yMba^{3}+2yMab^{3}=a^{4}+2a^{2}b^{2}+b^{4}-\left(\left(a^{2}\right)^{2}-2a^{2}b^{2}+\left(b^{2}\right)^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a^{2}-b^{2}\right)^{2}.
2yMba^{3}+2yMab^{3}=a^{4}+2a^{2}b^{2}+b^{4}-\left(a^{4}-2a^{2}b^{2}+\left(b^{2}\right)^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2yMba^{3}+2yMab^{3}=a^{4}+2a^{2}b^{2}+b^{4}-\left(a^{4}-2a^{2}b^{2}+b^{4}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2yMba^{3}+2yMab^{3}=a^{4}+2a^{2}b^{2}+b^{4}-a^{4}+2a^{2}b^{2}-b^{4}
To find the opposite of a^{4}-2a^{2}b^{2}+b^{4}, find the opposite of each term.
2yMba^{3}+2yMab^{3}=2a^{2}b^{2}+b^{4}+2a^{2}b^{2}-b^{4}
Combine a^{4} and -a^{4} to get 0.
2yMba^{3}+2yMab^{3}=4a^{2}b^{2}+b^{4}-b^{4}
Combine 2a^{2}b^{2} and 2a^{2}b^{2} to get 4a^{2}b^{2}.
2yMba^{3}+2yMab^{3}=4a^{2}b^{2}
Combine b^{4} and -b^{4} to get 0.
\left(2yba^{3}+2yab^{3}\right)M=4a^{2}b^{2}
Combine all terms containing M.
\left(2ayb^{3}+2bya^{3}\right)M=4a^{2}b^{2}
The equation is in standard form.
\frac{\left(2ayb^{3}+2bya^{3}\right)M}{2ayb^{3}+2bya^{3}}=\frac{4a^{2}b^{2}}{2ayb^{3}+2bya^{3}}
Divide both sides by 2yba^{3}+2yab^{3}.
M=\frac{4a^{2}b^{2}}{2ayb^{3}+2bya^{3}}
Dividing by 2yba^{3}+2yab^{3} undoes the multiplication by 2yba^{3}+2yab^{3}.
M=\frac{2ab}{y\left(a^{2}+b^{2}\right)}
Divide 4a^{2}b^{2} by 2yba^{3}+2yab^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}