Solve for x
\left\{\begin{matrix}x=-\frac{x_{1}y-x_{1}y_{2}-x_{2}y+x_{2}y_{1}}{y_{2}-y_{1}}\text{, }&x_{2}\neq x_{1}\text{ and }y_{1}\neq y_{2}\\x\in \mathrm{R}\text{, }&y_{1}=y_{2}\text{ and }x_{2}\neq x_{1}\text{ and }y=y_{2}\end{matrix}\right.
Solve for x_1
\left\{\begin{matrix}x_{1}=-\frac{xy_{1}-xy_{2}+x_{2}y-x_{2}y_{1}}{y_{2}-y}\text{, }&x_{2}\neq x\text{ and }y_{1}\neq y_{2}\text{ and }y\neq y_{2}\\x_{1}\neq x_{2}\text{, }&\left(y=y_{2}\text{ and }y_{1}=y_{2}\right)\text{ or }\left(y\neq y_{1}\text{ and }y_{2}=y\text{ and }x=x_{2}\right)\end{matrix}\right.
Share
Copied to clipboard
\left(-x_{1}+x_{2}\right)y-y_{1}\left(-x_{1}+x_{2}\right)=\left(y_{2}-y_{1}\right)\left(x-x_{1}\right)
Multiply both sides of the equation by -x_{1}+x_{2}.
-x_{1}y+x_{2}y-y_{1}\left(-x_{1}+x_{2}\right)=\left(y_{2}-y_{1}\right)\left(x-x_{1}\right)
Use the distributive property to multiply -x_{1}+x_{2} by y.
-x_{1}y+x_{2}y+y_{1}x_{1}-y_{1}x_{2}=\left(y_{2}-y_{1}\right)\left(x-x_{1}\right)
Use the distributive property to multiply -y_{1} by -x_{1}+x_{2}.
-x_{1}y+x_{2}y+y_{1}x_{1}-y_{1}x_{2}=y_{2}x-y_{2}x_{1}-y_{1}x+y_{1}x_{1}
Use the distributive property to multiply y_{2}-y_{1} by x-x_{1}.
y_{2}x-y_{2}x_{1}-y_{1}x+y_{1}x_{1}=-x_{1}y+x_{2}y+y_{1}x_{1}-y_{1}x_{2}
Swap sides so that all variable terms are on the left hand side.
y_{2}x-y_{1}x+y_{1}x_{1}=-x_{1}y+x_{2}y+y_{1}x_{1}-y_{1}x_{2}+y_{2}x_{1}
Add y_{2}x_{1} to both sides.
y_{2}x-y_{1}x=-x_{1}y+x_{2}y+y_{1}x_{1}-y_{1}x_{2}+y_{2}x_{1}-y_{1}x_{1}
Subtract y_{1}x_{1} from both sides.
y_{2}x-y_{1}x=-x_{1}y+x_{2}y-y_{1}x_{2}+y_{2}x_{1}
Combine y_{1}x_{1} and -y_{1}x_{1} to get 0.
\left(y_{2}-y_{1}\right)x=-x_{1}y+x_{2}y-y_{1}x_{2}+y_{2}x_{1}
Combine all terms containing x.
\left(y_{2}-y_{1}\right)x=-x_{1}y+x_{1}y_{2}+x_{2}y-x_{2}y_{1}
The equation is in standard form.
\frac{\left(y_{2}-y_{1}\right)x}{y_{2}-y_{1}}=\frac{-x_{1}y+x_{1}y_{2}+x_{2}y-x_{2}y_{1}}{y_{2}-y_{1}}
Divide both sides by y_{2}-y_{1}.
x=\frac{-x_{1}y+x_{1}y_{2}+x_{2}y-x_{2}y_{1}}{y_{2}-y_{1}}
Dividing by y_{2}-y_{1} undoes the multiplication by y_{2}-y_{1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}