Solve for x
x=\frac{25y}{12}-\frac{3637}{24}
Solve for y
y=\frac{12x}{25}+72.74
Graph
Share
Copied to clipboard
y-73.7=0.48x-0.96
Use the distributive property to multiply 0.48 by x-2.
0.48x-0.96=y-73.7
Swap sides so that all variable terms are on the left hand side.
0.48x=y-73.7+0.96
Add 0.96 to both sides.
0.48x=y-72.74
Add -73.7 and 0.96 to get -72.74.
\frac{0.48x}{0.48}=\frac{y-72.74}{0.48}
Divide both sides of the equation by 0.48, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y-72.74}{0.48}
Dividing by 0.48 undoes the multiplication by 0.48.
x=\frac{25y}{12}-\frac{3637}{24}
Divide y-72.74 by 0.48 by multiplying y-72.74 by the reciprocal of 0.48.
y-73.7=0.48x-0.96
Use the distributive property to multiply 0.48 by x-2.
y=0.48x-0.96+73.7
Add 73.7 to both sides.
y=0.48x+72.74
Add -0.96 and 73.7 to get 72.74.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}