Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{x-y+b+5}{y}\text{, }&y\neq 0\\a\in \mathrm{C}\text{, }&y=0\text{ and }x=-\left(b+5\right)\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{x-y+b+5}{y}\text{, }&y\neq 0\\a\in \mathrm{R}\text{, }&y=0\text{ and }x=-\left(b+5\right)\end{matrix}\right.
Solve for b
b=-\left(x+ay-y+5\right)
Graph
Share
Copied to clipboard
x+ay+b=y-5
Swap sides so that all variable terms are on the left hand side.
ay+b=y-5-x
Subtract x from both sides.
ay=y-5-x-b
Subtract b from both sides.
ya=-x+y-b-5
The equation is in standard form.
\frac{ya}{y}=\frac{-x+y-b-5}{y}
Divide both sides by y.
a=\frac{-x+y-b-5}{y}
Dividing by y undoes the multiplication by y.
x+ay+b=y-5
Swap sides so that all variable terms are on the left hand side.
ay+b=y-5-x
Subtract x from both sides.
ay=y-5-x-b
Subtract b from both sides.
ya=-x+y-b-5
The equation is in standard form.
\frac{ya}{y}=\frac{-x+y-b-5}{y}
Divide both sides by y.
a=\frac{-x+y-b-5}{y}
Dividing by y undoes the multiplication by y.
x+ay+b=y-5
Swap sides so that all variable terms are on the left hand side.
ay+b=y-5-x
Subtract x from both sides.
b=y-5-x-ay
Subtract ay from both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}