Solve for x
x=\frac{3-y}{2}
Solve for y
y=3-2x
Graph
Share
Copied to clipboard
y-5=-2\left(x+1\right)
The opposite of -1 is 1.
y-5=-2x-2
Use the distributive property to multiply -2 by x+1.
-2x-2=y-5
Swap sides so that all variable terms are on the left hand side.
-2x=y-5+2
Add 2 to both sides.
-2x=y-3
Add -5 and 2 to get -3.
\frac{-2x}{-2}=\frac{y-3}{-2}
Divide both sides by -2.
x=\frac{y-3}{-2}
Dividing by -2 undoes the multiplication by -2.
x=\frac{3-y}{2}
Divide y-3 by -2.
y-5=-2\left(x+1\right)
The opposite of -1 is 1.
y-5=-2x-2
Use the distributive property to multiply -2 by x+1.
y=-2x-2+5
Add 5 to both sides.
y=-2x+3
Add -2 and 5 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}