Solve for x
x=\frac{4y}{5}-6
Solve for y
y=\frac{5\left(x+6\right)}{4}
Graph
Share
Copied to clipboard
y-5=\frac{5}{4}\left(x+2\right)
The opposite of -2 is 2.
y-5=\frac{5}{4}x+\frac{5}{2}
Use the distributive property to multiply \frac{5}{4} by x+2.
\frac{5}{4}x+\frac{5}{2}=y-5
Swap sides so that all variable terms are on the left hand side.
\frac{5}{4}x=y-5-\frac{5}{2}
Subtract \frac{5}{2} from both sides.
\frac{5}{4}x=y-\frac{15}{2}
Subtract \frac{5}{2} from -5 to get -\frac{15}{2}.
\frac{\frac{5}{4}x}{\frac{5}{4}}=\frac{y-\frac{15}{2}}{\frac{5}{4}}
Divide both sides of the equation by \frac{5}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y-\frac{15}{2}}{\frac{5}{4}}
Dividing by \frac{5}{4} undoes the multiplication by \frac{5}{4}.
x=\frac{4y}{5}-6
Divide y-\frac{15}{2} by \frac{5}{4} by multiplying y-\frac{15}{2} by the reciprocal of \frac{5}{4}.
y-5=\frac{5}{4}\left(x+2\right)
The opposite of -2 is 2.
y-5=\frac{5}{4}x+\frac{5}{2}
Use the distributive property to multiply \frac{5}{4} by x+2.
y=\frac{5}{4}x+\frac{5}{2}+5
Add 5 to both sides.
y=\frac{5}{4}x+\frac{15}{2}
Add \frac{5}{2} and 5 to get \frac{15}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}