Solve for x
x=-\frac{y}{6}-\frac{7}{2}
Solve for y
y=-6x-21
Graph
Share
Copied to clipboard
y-3=-6x-24
Use the distributive property to multiply -6 by x+4.
-6x-24=y-3
Swap sides so that all variable terms are on the left hand side.
-6x=y-3+24
Add 24 to both sides.
-6x=y+21
Add -3 and 24 to get 21.
\frac{-6x}{-6}=\frac{y+21}{-6}
Divide both sides by -6.
x=\frac{y+21}{-6}
Dividing by -6 undoes the multiplication by -6.
x=-\frac{y}{6}-\frac{7}{2}
Divide y+21 by -6.
y-3=-6x-24
Use the distributive property to multiply -6 by x+4.
y=-6x-24+3
Add 3 to both sides.
y=-6x-21
Add -24 and 3 to get -21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}