Solve for x
x=\frac{6y+7}{5}
Solve for y
y=\frac{5x-7}{6}
Graph
Share
Copied to clipboard
y-3=\frac{-5}{-1-5}\left(x-5\right)
Subtract 3 from -2 to get -5.
y-3=\frac{-5}{-6}\left(x-5\right)
Subtract 5 from -1 to get -6.
y-3=\frac{5}{6}\left(x-5\right)
Fraction \frac{-5}{-6} can be simplified to \frac{5}{6} by removing the negative sign from both the numerator and the denominator.
y-3=\frac{5}{6}x-\frac{25}{6}
Use the distributive property to multiply \frac{5}{6} by x-5.
\frac{5}{6}x-\frac{25}{6}=y-3
Swap sides so that all variable terms are on the left hand side.
\frac{5}{6}x=y-3+\frac{25}{6}
Add \frac{25}{6} to both sides.
\frac{5}{6}x=y+\frac{7}{6}
Add -3 and \frac{25}{6} to get \frac{7}{6}.
\frac{\frac{5}{6}x}{\frac{5}{6}}=\frac{y+\frac{7}{6}}{\frac{5}{6}}
Divide both sides of the equation by \frac{5}{6}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y+\frac{7}{6}}{\frac{5}{6}}
Dividing by \frac{5}{6} undoes the multiplication by \frac{5}{6}.
x=\frac{6y+7}{5}
Divide y+\frac{7}{6} by \frac{5}{6} by multiplying y+\frac{7}{6} by the reciprocal of \frac{5}{6}.
y-3=\frac{-5}{-1-5}\left(x-5\right)
Subtract 3 from -2 to get -5.
y-3=\frac{-5}{-6}\left(x-5\right)
Subtract 5 from -1 to get -6.
y-3=\frac{5}{6}\left(x-5\right)
Fraction \frac{-5}{-6} can be simplified to \frac{5}{6} by removing the negative sign from both the numerator and the denominator.
y-3=\frac{5}{6}x-\frac{25}{6}
Use the distributive property to multiply \frac{5}{6} by x-5.
y=\frac{5}{6}x-\frac{25}{6}+3
Add 3 to both sides.
y=\frac{5}{6}x-\frac{7}{6}
Add -\frac{25}{6} and 3 to get -\frac{7}{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}