Solve for x
x=\frac{y+13}{5}
Solve for y
y=5x-13
Graph
Share
Copied to clipboard
y-2=5x-15
Use the distributive property to multiply 5 by x-3.
5x-15=y-2
Swap sides so that all variable terms are on the left hand side.
5x=y-2+15
Add 15 to both sides.
5x=y+13
Add -2 and 15 to get 13.
\frac{5x}{5}=\frac{y+13}{5}
Divide both sides by 5.
x=\frac{y+13}{5}
Dividing by 5 undoes the multiplication by 5.
y-2=5x-15
Use the distributive property to multiply 5 by x-3.
y=5x-15+2
Add 2 to both sides.
y=5x-13
Add -15 and 2 to get -13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}