Solve for x
x=\frac{5y}{4}-4.625
Solve for y
y=\frac{4x}{5}+3.7
Graph
Share
Copied to clipboard
y-4.9=0.8x-1.2
Use the distributive property to multiply 0.8 by x-1.5.
0.8x-1.2=y-4.9
Swap sides so that all variable terms are on the left hand side.
0.8x=y-4.9+1.2
Add 1.2 to both sides.
0.8x=y-3.7
Add -4.9 and 1.2 to get -3.7.
\frac{0.8x}{0.8}=\frac{y-3.7}{0.8}
Divide both sides of the equation by 0.8, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y-3.7}{0.8}
Dividing by 0.8 undoes the multiplication by 0.8.
x=\frac{5y}{4}-\frac{37}{8}
Divide y-3.7 by 0.8 by multiplying y-3.7 by the reciprocal of 0.8.
y-4.9=0.8x-1.2
Use the distributive property to multiply 0.8 by x-1.5.
y=0.8x-1.2+4.9
Add 4.9 to both sides.
y=0.8x+3.7
Add -1.2 and 4.9 to get 3.7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}