Evaluate
21+y+10x-24x^{2}
Expand
21+y+10x-24x^{2}
Share
Copied to clipboard
y-\left(6x-7\right)\left(4x+3\right)
Combine 3x and 3x to get 6x.
y-\left(24x^{2}+18x-28x-21\right)
Apply the distributive property by multiplying each term of 6x-7 by each term of 4x+3.
y-\left(24x^{2}-10x-21\right)
Combine 18x and -28x to get -10x.
y-24x^{2}-\left(-10x\right)-\left(-21\right)
To find the opposite of 24x^{2}-10x-21, find the opposite of each term.
y-24x^{2}+10x-\left(-21\right)
The opposite of -10x is 10x.
y-24x^{2}+10x+21
The opposite of -21 is 21.
y-\left(6x-7\right)\left(4x+3\right)
Combine 3x and 3x to get 6x.
y-\left(24x^{2}+18x-28x-21\right)
Apply the distributive property by multiplying each term of 6x-7 by each term of 4x+3.
y-\left(24x^{2}-10x-21\right)
Combine 18x and -28x to get -10x.
y-24x^{2}-\left(-10x\right)-\left(-21\right)
To find the opposite of 24x^{2}-10x-21, find the opposite of each term.
y-24x^{2}+10x-\left(-21\right)
The opposite of -10x is 10x.
y-24x^{2}+10x+21
The opposite of -21 is 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}