Solve for x
x=-\frac{30}{3-5y}
y\neq \frac{3}{5}
Solve for y
y=\frac{3}{5}+\frac{6}{x}
x\neq 0
Graph
Share
Copied to clipboard
15xy-15\times 6=x\times 9
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 15x, the least common multiple of x,15.
15xy-90=x\times 9
Multiply -15 and 6 to get -90.
15xy-90-x\times 9=0
Subtract x\times 9 from both sides.
15xy-90-9x=0
Multiply -1 and 9 to get -9.
15xy-9x=90
Add 90 to both sides. Anything plus zero gives itself.
\left(15y-9\right)x=90
Combine all terms containing x.
\frac{\left(15y-9\right)x}{15y-9}=\frac{90}{15y-9}
Divide both sides by 15y-9.
x=\frac{90}{15y-9}
Dividing by 15y-9 undoes the multiplication by 15y-9.
x=\frac{30}{5y-3}
Divide 90 by 15y-9.
x=\frac{30}{5y-3}\text{, }x\neq 0
Variable x cannot be equal to 0.
15xy-15\times 6=x\times 9
Multiply both sides of the equation by 15x, the least common multiple of x,15.
15xy-90=x\times 9
Multiply -15 and 6 to get -90.
15xy=x\times 9+90
Add 90 to both sides.
15xy=9x+90
The equation is in standard form.
\frac{15xy}{15x}=\frac{9x+90}{15x}
Divide both sides by 15x.
y=\frac{9x+90}{15x}
Dividing by 15x undoes the multiplication by 15x.
y=\frac{3}{5}+\frac{6}{x}
Divide 90+9x by 15x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}