Solve for y
y=\frac{23}{40}=0.575
Graph
Share
Copied to clipboard
y-\frac{1}{4}=\frac{5}{8}-\frac{3}{10}
Reduce the fraction \frac{5}{20} to lowest terms by extracting and canceling out 5.
y-\frac{1}{4}=\frac{25}{40}-\frac{12}{40}
Least common multiple of 8 and 10 is 40. Convert \frac{5}{8} and \frac{3}{10} to fractions with denominator 40.
y-\frac{1}{4}=\frac{25-12}{40}
Since \frac{25}{40} and \frac{12}{40} have the same denominator, subtract them by subtracting their numerators.
y-\frac{1}{4}=\frac{13}{40}
Subtract 12 from 25 to get 13.
y=\frac{13}{40}+\frac{1}{4}
Add \frac{1}{4} to both sides.
y=\frac{13}{40}+\frac{10}{40}
Least common multiple of 40 and 4 is 40. Convert \frac{13}{40} and \frac{1}{4} to fractions with denominator 40.
y=\frac{13+10}{40}
Since \frac{13}{40} and \frac{10}{40} have the same denominator, add them by adding their numerators.
y=\frac{23}{40}
Add 13 and 10 to get 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}