Solve for y
y\geq -\frac{1}{4}
Graph
Share
Copied to clipboard
y-\frac{1}{2}-\frac{4}{2}\leq 3y-2
Convert 2 to fraction \frac{4}{2}.
y+\frac{-1-4}{2}\leq 3y-2
Since -\frac{1}{2} and \frac{4}{2} have the same denominator, subtract them by subtracting their numerators.
y-\frac{5}{2}\leq 3y-2
Subtract 4 from -1 to get -5.
y-\frac{5}{2}-3y\leq -2
Subtract 3y from both sides.
-2y-\frac{5}{2}\leq -2
Combine y and -3y to get -2y.
-2y\leq -2+\frac{5}{2}
Add \frac{5}{2} to both sides.
-2y\leq -\frac{4}{2}+\frac{5}{2}
Convert -2 to fraction -\frac{4}{2}.
-2y\leq \frac{-4+5}{2}
Since -\frac{4}{2} and \frac{5}{2} have the same denominator, add them by adding their numerators.
-2y\leq \frac{1}{2}
Add -4 and 5 to get 1.
y\geq \frac{\frac{1}{2}}{-2}
Divide both sides by -2. Since -2 is negative, the inequality direction is changed.
y\geq \frac{1}{2\left(-2\right)}
Express \frac{\frac{1}{2}}{-2} as a single fraction.
y\geq \frac{1}{-4}
Multiply 2 and -2 to get -4.
y\geq -\frac{1}{4}
Fraction \frac{1}{-4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}