Solve for x
x=-3y-\frac{5}{2}
Solve for y
y=-\frac{x}{3}-\frac{5}{6}
Graph
Share
Copied to clipboard
y-\frac{1}{2}=\frac{\frac{3}{2}}{-4-\frac{1}{2}}\left(x+4\right)
Add \frac{1}{2} and 1 to get \frac{3}{2}.
y-\frac{1}{2}=\frac{\frac{3}{2}}{-\frac{9}{2}}\left(x+4\right)
Subtract \frac{1}{2} from -4 to get -\frac{9}{2}.
y-\frac{1}{2}=\frac{3}{2}\left(-\frac{2}{9}\right)\left(x+4\right)
Divide \frac{3}{2} by -\frac{9}{2} by multiplying \frac{3}{2} by the reciprocal of -\frac{9}{2}.
y-\frac{1}{2}=-\frac{1}{3}\left(x+4\right)
Multiply \frac{3}{2} and -\frac{2}{9} to get -\frac{1}{3}.
y-\frac{1}{2}=-\frac{1}{3}x-\frac{4}{3}
Use the distributive property to multiply -\frac{1}{3} by x+4.
-\frac{1}{3}x-\frac{4}{3}=y-\frac{1}{2}
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{3}x=y-\frac{1}{2}+\frac{4}{3}
Add \frac{4}{3} to both sides.
-\frac{1}{3}x=y+\frac{5}{6}
Add -\frac{1}{2} and \frac{4}{3} to get \frac{5}{6}.
\frac{-\frac{1}{3}x}{-\frac{1}{3}}=\frac{y+\frac{5}{6}}{-\frac{1}{3}}
Multiply both sides by -3.
x=\frac{y+\frac{5}{6}}{-\frac{1}{3}}
Dividing by -\frac{1}{3} undoes the multiplication by -\frac{1}{3}.
x=-3y-\frac{5}{2}
Divide y+\frac{5}{6} by -\frac{1}{3} by multiplying y+\frac{5}{6} by the reciprocal of -\frac{1}{3}.
y-\frac{1}{2}=\frac{\frac{3}{2}}{-4-\frac{1}{2}}\left(x+4\right)
Add \frac{1}{2} and 1 to get \frac{3}{2}.
y-\frac{1}{2}=\frac{\frac{3}{2}}{-\frac{9}{2}}\left(x+4\right)
Subtract \frac{1}{2} from -4 to get -\frac{9}{2}.
y-\frac{1}{2}=\frac{3}{2}\left(-\frac{2}{9}\right)\left(x+4\right)
Divide \frac{3}{2} by -\frac{9}{2} by multiplying \frac{3}{2} by the reciprocal of -\frac{9}{2}.
y-\frac{1}{2}=-\frac{1}{3}\left(x+4\right)
Multiply \frac{3}{2} and -\frac{2}{9} to get -\frac{1}{3}.
y-\frac{1}{2}=-\frac{1}{3}x-\frac{4}{3}
Use the distributive property to multiply -\frac{1}{3} by x+4.
y=-\frac{1}{3}x-\frac{4}{3}+\frac{1}{2}
Add \frac{1}{2} to both sides.
y=-\frac{1}{3}x-\frac{5}{6}
Add -\frac{4}{3} and \frac{1}{2} to get -\frac{5}{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}