Solve for x
x=\frac{7y+18}{y+7}
y\neq -7
Solve for y
y=-\frac{18-7x}{7-x}
x\neq 7
Graph
Share
Copied to clipboard
7y-yx-3\left(x-2\right)=4\left(x-3\right)
Use the distributive property to multiply y by 7-x.
7y-yx-3x+6=4\left(x-3\right)
Use the distributive property to multiply -3 by x-2.
7y-yx-3x+6=4x-12
Use the distributive property to multiply 4 by x-3.
7y-yx-3x+6-4x=-12
Subtract 4x from both sides.
7y-yx-7x+6=-12
Combine -3x and -4x to get -7x.
-yx-7x+6=-12-7y
Subtract 7y from both sides.
-yx-7x=-12-7y-6
Subtract 6 from both sides.
-yx-7x=-18-7y
Subtract 6 from -12 to get -18.
\left(-y-7\right)x=-18-7y
Combine all terms containing x.
\left(-y-7\right)x=-7y-18
The equation is in standard form.
\frac{\left(-y-7\right)x}{-y-7}=\frac{-7y-18}{-y-7}
Divide both sides by -y-7.
x=\frac{-7y-18}{-y-7}
Dividing by -y-7 undoes the multiplication by -y-7.
x=\frac{7y+18}{y+7}
Divide -18-7y by -y-7.
7y-yx-3\left(x-2\right)=4\left(x-3\right)
Use the distributive property to multiply y by 7-x.
7y-yx-3x+6=4\left(x-3\right)
Use the distributive property to multiply -3 by x-2.
7y-yx-3x+6=4x-12
Use the distributive property to multiply 4 by x-3.
7y-yx+6=4x-12+3x
Add 3x to both sides.
7y-yx+6=7x-12
Combine 4x and 3x to get 7x.
7y-yx=7x-12-6
Subtract 6 from both sides.
7y-yx=7x-18
Subtract 6 from -12 to get -18.
\left(7-x\right)y=7x-18
Combine all terms containing y.
\frac{\left(7-x\right)y}{7-x}=\frac{7x-18}{7-x}
Divide both sides by 7-x.
y=\frac{7x-18}{7-x}
Dividing by 7-x undoes the multiplication by 7-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}