y ( 4 + e ^ { x } ) d y - e ^ { x } d x = 0
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x\geq 0\text{ and }|y|=\frac{\sqrt{x}e^{\frac{x}{2}}}{\sqrt{e^{x}+4}}\end{matrix}\right.
Graph
Share
Copied to clipboard
y^{2}\left(4+e^{x}\right)d-e^{x}dx=0
Multiply y and y to get y^{2}.
\left(4y^{2}+y^{2}e^{x}\right)d-e^{x}dx=0
Use the distributive property to multiply y^{2} by 4+e^{x}.
4y^{2}d+y^{2}e^{x}d-e^{x}dx=0
Use the distributive property to multiply 4y^{2}+y^{2}e^{x} by d.
-dxe^{x}+dy^{2}e^{x}+4dy^{2}=0
Reorder the terms.
\left(-xe^{x}+y^{2}e^{x}+4y^{2}\right)d=0
Combine all terms containing d.
\left(4y^{2}+y^{2}e^{x}-xe^{x}\right)d=0
The equation is in standard form.
d=0
Divide 0 by -xe^{x}+y^{2}e^{x}+4y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}