Solve for x
x=-\frac{3\left(y-2\right)}{11-2y}
y\neq \frac{11}{2}
Solve for y
y=-\frac{11x-6}{3-2x}
x\neq \frac{3}{2}
Graph
Share
Copied to clipboard
3y-2yx-x=4\left(1-3x\right)+2
Use the distributive property to multiply y by 3-2x.
3y-2yx-x=4-12x+2
Use the distributive property to multiply 4 by 1-3x.
3y-2yx-x=6-12x
Add 4 and 2 to get 6.
3y-2yx-x+12x=6
Add 12x to both sides.
3y-2yx+11x=6
Combine -x and 12x to get 11x.
-2yx+11x=6-3y
Subtract 3y from both sides.
\left(-2y+11\right)x=6-3y
Combine all terms containing x.
\left(11-2y\right)x=6-3y
The equation is in standard form.
\frac{\left(11-2y\right)x}{11-2y}=\frac{6-3y}{11-2y}
Divide both sides by -2y+11.
x=\frac{6-3y}{11-2y}
Dividing by -2y+11 undoes the multiplication by -2y+11.
x=\frac{3\left(2-y\right)}{11-2y}
Divide 6-3y by -2y+11.
3y-2yx-x=4\left(1-3x\right)+2
Use the distributive property to multiply y by 3-2x.
3y-2yx-x=4-12x+2
Use the distributive property to multiply 4 by 1-3x.
3y-2yx-x=6-12x
Add 4 and 2 to get 6.
3y-2yx=6-12x+x
Add x to both sides.
3y-2yx=6-11x
Combine -12x and x to get -11x.
\left(3-2x\right)y=6-11x
Combine all terms containing y.
\frac{\left(3-2x\right)y}{3-2x}=\frac{6-11x}{3-2x}
Divide both sides by 3-2x.
y=\frac{6-11x}{3-2x}
Dividing by 3-2x undoes the multiplication by 3-2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}