Solve for y (complex solution)
y=\frac{7\sqrt{3}x^{-\frac{1}{2}}}{3}
x\neq 0
Solve for x
x=\frac{49}{3y^{2}}
y>0
Solve for y
y=\frac{7\sqrt{\frac{3}{x}}}{3}
x>0
Solve for x (complex solution)
x=\frac{49}{3y^{2}}
arg(\sqrt{\frac{1}{y^{2}}}y)<\pi \text{ and }y\neq 0
Graph
Share
Copied to clipboard
\sqrt{3x}y=7
The equation is in standard form.
\frac{\sqrt{3x}y}{\sqrt{3x}}=\frac{7}{\sqrt{3x}}
Divide both sides by \sqrt{3x}.
y=\frac{7}{\sqrt{3x}}
Dividing by \sqrt{3x} undoes the multiplication by \sqrt{3x}.
y=7\times \left(3x\right)^{-\frac{1}{2}}
Divide 7 by \sqrt{3x}.
\frac{y\sqrt{3x}}{y}=\frac{7}{y}
Divide both sides by y.
\sqrt{3x}=\frac{7}{y}
Dividing by y undoes the multiplication by y.
3x=\frac{49}{y^{2}}
Square both sides of the equation.
\frac{3x}{3}=\frac{49}{3y^{2}}
Divide both sides by 3.
x=\frac{49}{3y^{2}}
Dividing by 3 undoes the multiplication by 3.
\sqrt{3x}y=7
The equation is in standard form.
\frac{\sqrt{3x}y}{\sqrt{3x}}=\frac{7}{\sqrt{3x}}
Divide both sides by \sqrt{3x}.
y=\frac{7}{\sqrt{3x}}
Dividing by \sqrt{3x} undoes the multiplication by \sqrt{3x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}