Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y\sqrt{15-4\sqrt{11}}=\left(x-\sqrt{44}\right)\sqrt{20+\sqrt{396}}
Factor 176=4^{2}\times 11. Rewrite the square root of the product \sqrt{4^{2}\times 11} as the product of square roots \sqrt{4^{2}}\sqrt{11}. Take the square root of 4^{2}.
y\sqrt{15-4\sqrt{11}}=\left(x-2\sqrt{11}\right)\sqrt{20+\sqrt{396}}
Factor 44=2^{2}\times 11. Rewrite the square root of the product \sqrt{2^{2}\times 11} as the product of square roots \sqrt{2^{2}}\sqrt{11}. Take the square root of 2^{2}.
y\sqrt{15-4\sqrt{11}}=\left(x-2\sqrt{11}\right)\sqrt{20+6\sqrt{11}}
Factor 396=6^{2}\times 11. Rewrite the square root of the product \sqrt{6^{2}\times 11} as the product of square roots \sqrt{6^{2}}\sqrt{11}. Take the square root of 6^{2}.
y\sqrt{15-4\sqrt{11}}=x\sqrt{20+6\sqrt{11}}-2\sqrt{11}\sqrt{20+6\sqrt{11}}
Use the distributive property to multiply x-2\sqrt{11} by \sqrt{20+6\sqrt{11}}.
x\sqrt{20+6\sqrt{11}}-2\sqrt{11}\sqrt{20+6\sqrt{11}}=y\sqrt{15-4\sqrt{11}}
Swap sides so that all variable terms are on the left hand side.
x\sqrt{20+6\sqrt{11}}=y\sqrt{15-4\sqrt{11}}+2\sqrt{11}\sqrt{20+6\sqrt{11}}
Add 2\sqrt{11}\sqrt{20+6\sqrt{11}} to both sides.
\sqrt{6\sqrt{11}+20}x=\sqrt{15-4\sqrt{11}}y+2\sqrt{11}\sqrt{6\sqrt{11}+20}
The equation is in standard form.
\frac{\sqrt{6\sqrt{11}+20}x}{\sqrt{6\sqrt{11}+20}}=\frac{\left(\sqrt{11}-2\right)y+6\sqrt{11}+22}{\sqrt{6\sqrt{11}+20}}
Divide both sides by \sqrt{20+6\sqrt{11}}.
x=\frac{\left(\sqrt{11}-2\right)y+6\sqrt{11}+22}{\sqrt{6\sqrt{11}+20}}
Dividing by \sqrt{20+6\sqrt{11}} undoes the multiplication by \sqrt{20+6\sqrt{11}}.
x=\frac{\left(\sqrt{11}-3\right)\left(\left(\sqrt{11}-2\right)y+6\sqrt{11}+22\right)}{2}
Divide y\left(\sqrt{11}-2\right)+22+6\sqrt{11} by \sqrt{20+6\sqrt{11}}.
y\sqrt{15-4\sqrt{11}}=\left(x-\sqrt{44}\right)\sqrt{20+\sqrt{396}}
Factor 176=4^{2}\times 11. Rewrite the square root of the product \sqrt{4^{2}\times 11} as the product of square roots \sqrt{4^{2}}\sqrt{11}. Take the square root of 4^{2}.
y\sqrt{15-4\sqrt{11}}=\left(x-2\sqrt{11}\right)\sqrt{20+\sqrt{396}}
Factor 44=2^{2}\times 11. Rewrite the square root of the product \sqrt{2^{2}\times 11} as the product of square roots \sqrt{2^{2}}\sqrt{11}. Take the square root of 2^{2}.
y\sqrt{15-4\sqrt{11}}=\left(x-2\sqrt{11}\right)\sqrt{20+6\sqrt{11}}
Factor 396=6^{2}\times 11. Rewrite the square root of the product \sqrt{6^{2}\times 11} as the product of square roots \sqrt{6^{2}}\sqrt{11}. Take the square root of 6^{2}.
y\sqrt{15-4\sqrt{11}}=x\sqrt{20+6\sqrt{11}}-2\sqrt{11}\sqrt{20+6\sqrt{11}}
Use the distributive property to multiply x-2\sqrt{11} by \sqrt{20+6\sqrt{11}}.
\sqrt{15-4\sqrt{11}}y=\sqrt{6\sqrt{11}+20}x-2\sqrt{11}\sqrt{6\sqrt{11}+20}
The equation is in standard form.
\frac{\sqrt{15-4\sqrt{11}}y}{\sqrt{15-4\sqrt{11}}}=\frac{\left(\sqrt{11}+3\right)\left(x-2\sqrt{11}\right)}{\sqrt{15-4\sqrt{11}}}
Divide both sides by \sqrt{15-4\sqrt{11}}.
y=\frac{\left(\sqrt{11}+3\right)\left(x-2\sqrt{11}\right)}{\sqrt{15-4\sqrt{11}}}
Dividing by \sqrt{15-4\sqrt{11}} undoes the multiplication by \sqrt{15-4\sqrt{11}}.
y=\frac{5\sqrt{11}+17}{7}\left(x-2\sqrt{11}\right)
Divide \left(x-2\sqrt{11}\right)\left(\sqrt{11}+3\right) by \sqrt{15-4\sqrt{11}}.