Solve for x
x=-\frac{5\sqrt{11}y}{2}+\frac{17y}{2}+2\sqrt{11}
Solve for y
y=\frac{5\sqrt{11}x+17x-34\sqrt{11}-110}{7}
Graph
Share
Copied to clipboard
y\sqrt{15-4\sqrt{11}}=\left(x-\sqrt{44}\right)\sqrt{20+\sqrt{396}}
Factor 176=4^{2}\times 11. Rewrite the square root of the product \sqrt{4^{2}\times 11} as the product of square roots \sqrt{4^{2}}\sqrt{11}. Take the square root of 4^{2}.
y\sqrt{15-4\sqrt{11}}=\left(x-2\sqrt{11}\right)\sqrt{20+\sqrt{396}}
Factor 44=2^{2}\times 11. Rewrite the square root of the product \sqrt{2^{2}\times 11} as the product of square roots \sqrt{2^{2}}\sqrt{11}. Take the square root of 2^{2}.
y\sqrt{15-4\sqrt{11}}=\left(x-2\sqrt{11}\right)\sqrt{20+6\sqrt{11}}
Factor 396=6^{2}\times 11. Rewrite the square root of the product \sqrt{6^{2}\times 11} as the product of square roots \sqrt{6^{2}}\sqrt{11}. Take the square root of 6^{2}.
y\sqrt{15-4\sqrt{11}}=x\sqrt{20+6\sqrt{11}}-2\sqrt{11}\sqrt{20+6\sqrt{11}}
Use the distributive property to multiply x-2\sqrt{11} by \sqrt{20+6\sqrt{11}}.
x\sqrt{20+6\sqrt{11}}-2\sqrt{11}\sqrt{20+6\sqrt{11}}=y\sqrt{15-4\sqrt{11}}
Swap sides so that all variable terms are on the left hand side.
x\sqrt{20+6\sqrt{11}}=y\sqrt{15-4\sqrt{11}}+2\sqrt{11}\sqrt{20+6\sqrt{11}}
Add 2\sqrt{11}\sqrt{20+6\sqrt{11}} to both sides.
\sqrt{6\sqrt{11}+20}x=\sqrt{15-4\sqrt{11}}y+2\sqrt{11}\sqrt{6\sqrt{11}+20}
The equation is in standard form.
\frac{\sqrt{6\sqrt{11}+20}x}{\sqrt{6\sqrt{11}+20}}=\frac{\left(\sqrt{11}-2\right)y+6\sqrt{11}+22}{\sqrt{6\sqrt{11}+20}}
Divide both sides by \sqrt{20+6\sqrt{11}}.
x=\frac{\left(\sqrt{11}-2\right)y+6\sqrt{11}+22}{\sqrt{6\sqrt{11}+20}}
Dividing by \sqrt{20+6\sqrt{11}} undoes the multiplication by \sqrt{20+6\sqrt{11}}.
x=\frac{\left(\sqrt{11}-3\right)\left(\left(\sqrt{11}-2\right)y+6\sqrt{11}+22\right)}{2}
Divide y\left(\sqrt{11}-2\right)+22+6\sqrt{11} by \sqrt{20+6\sqrt{11}}.
y\sqrt{15-4\sqrt{11}}=\left(x-\sqrt{44}\right)\sqrt{20+\sqrt{396}}
Factor 176=4^{2}\times 11. Rewrite the square root of the product \sqrt{4^{2}\times 11} as the product of square roots \sqrt{4^{2}}\sqrt{11}. Take the square root of 4^{2}.
y\sqrt{15-4\sqrt{11}}=\left(x-2\sqrt{11}\right)\sqrt{20+\sqrt{396}}
Factor 44=2^{2}\times 11. Rewrite the square root of the product \sqrt{2^{2}\times 11} as the product of square roots \sqrt{2^{2}}\sqrt{11}. Take the square root of 2^{2}.
y\sqrt{15-4\sqrt{11}}=\left(x-2\sqrt{11}\right)\sqrt{20+6\sqrt{11}}
Factor 396=6^{2}\times 11. Rewrite the square root of the product \sqrt{6^{2}\times 11} as the product of square roots \sqrt{6^{2}}\sqrt{11}. Take the square root of 6^{2}.
y\sqrt{15-4\sqrt{11}}=x\sqrt{20+6\sqrt{11}}-2\sqrt{11}\sqrt{20+6\sqrt{11}}
Use the distributive property to multiply x-2\sqrt{11} by \sqrt{20+6\sqrt{11}}.
\sqrt{15-4\sqrt{11}}y=\sqrt{6\sqrt{11}+20}x-2\sqrt{11}\sqrt{6\sqrt{11}+20}
The equation is in standard form.
\frac{\sqrt{15-4\sqrt{11}}y}{\sqrt{15-4\sqrt{11}}}=\frac{\left(\sqrt{11}+3\right)\left(x-2\sqrt{11}\right)}{\sqrt{15-4\sqrt{11}}}
Divide both sides by \sqrt{15-4\sqrt{11}}.
y=\frac{\left(\sqrt{11}+3\right)\left(x-2\sqrt{11}\right)}{\sqrt{15-4\sqrt{11}}}
Dividing by \sqrt{15-4\sqrt{11}} undoes the multiplication by \sqrt{15-4\sqrt{11}}.
y=\frac{5\sqrt{11}+17}{7}\left(x-2\sqrt{11}\right)
Divide \left(x-2\sqrt{11}\right)\left(\sqrt{11}+3\right) by \sqrt{15-4\sqrt{11}}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}