Solve for x
x=-\frac{5\left(y-6\pi \right)}{3y-5}
y\neq \frac{5}{3}
Solve for y
y=\frac{5\left(x+6\pi \right)}{3x+5}
x\neq -\frac{5}{3}
Graph
Share
Copied to clipboard
3yx-5\left(x-y\right)=30\pi
Multiply both sides of the equation by 15, the least common multiple of 5,3.
3yx-5x+5y=30\pi
Use the distributive property to multiply -5 by x-y.
3yx-5x=30\pi -5y
Subtract 5y from both sides.
\left(3y-5\right)x=30\pi -5y
Combine all terms containing x.
\frac{\left(3y-5\right)x}{3y-5}=\frac{30\pi -5y}{3y-5}
Divide both sides by 3y-5.
x=\frac{30\pi -5y}{3y-5}
Dividing by 3y-5 undoes the multiplication by 3y-5.
x=\frac{5\left(6\pi -y\right)}{3y-5}
Divide 30\pi -5y by 3y-5.
3yx-5\left(x-y\right)=30\pi
Multiply both sides of the equation by 15, the least common multiple of 5,3.
3yx-5x+5y=30\pi
Use the distributive property to multiply -5 by x-y.
3yx+5y=30\pi +5x
Add 5x to both sides.
\left(3x+5\right)y=30\pi +5x
Combine all terms containing y.
\left(3x+5\right)y=5x+30\pi
The equation is in standard form.
\frac{\left(3x+5\right)y}{3x+5}=\frac{5x+30\pi }{3x+5}
Divide both sides by 3x+5.
y=\frac{5x+30\pi }{3x+5}
Dividing by 3x+5 undoes the multiplication by 3x+5.
y=\frac{5\left(x+6\pi \right)}{3x+5}
Divide 30\pi +5x by 3x+5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}