Evaluate
\frac{\left(\frac{b}{g}\right)^{6}y}{144}
Expand
\frac{\left(\frac{b}{g}\right)^{6}y}{144}
Graph
Quiz
Algebra
5 problems similar to:
y \frac { ( 3 b ^ { - 4 } g ^ { 3 } ) ^ { - 2 } } { ( 4 b ) ^ { 2 } }
Share
Copied to clipboard
y\times \frac{3^{-2}\left(b^{-4}\right)^{-2}\left(g^{3}\right)^{-2}}{\left(4b\right)^{2}}
Expand \left(3b^{-4}g^{3}\right)^{-2}.
y\times \frac{3^{-2}b^{8}\left(g^{3}\right)^{-2}}{\left(4b\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -4 and -2 to get 8.
y\times \frac{3^{-2}b^{8}g^{-6}}{\left(4b\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
y\times \frac{\frac{1}{9}b^{8}g^{-6}}{\left(4b\right)^{2}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
y\times \frac{\frac{1}{9}b^{8}g^{-6}}{4^{2}b^{2}}
Expand \left(4b\right)^{2}.
y\times \frac{\frac{1}{9}b^{8}g^{-6}}{16b^{2}}
Calculate 4 to the power of 2 and get 16.
y\times \frac{\frac{1}{9}g^{-6}b^{6}}{16}
Cancel out b^{2} in both numerator and denominator.
y\times \frac{1}{144}g^{-6}b^{6}
Divide \frac{1}{9}g^{-6}b^{6} by 16 to get \frac{1}{144}g^{-6}b^{6}.
y\times \frac{3^{-2}\left(b^{-4}\right)^{-2}\left(g^{3}\right)^{-2}}{\left(4b\right)^{2}}
Expand \left(3b^{-4}g^{3}\right)^{-2}.
y\times \frac{3^{-2}b^{8}\left(g^{3}\right)^{-2}}{\left(4b\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -4 and -2 to get 8.
y\times \frac{3^{-2}b^{8}g^{-6}}{\left(4b\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
y\times \frac{\frac{1}{9}b^{8}g^{-6}}{\left(4b\right)^{2}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
y\times \frac{\frac{1}{9}b^{8}g^{-6}}{4^{2}b^{2}}
Expand \left(4b\right)^{2}.
y\times \frac{\frac{1}{9}b^{8}g^{-6}}{16b^{2}}
Calculate 4 to the power of 2 and get 16.
y\times \frac{\frac{1}{9}g^{-6}b^{6}}{16}
Cancel out b^{2} in both numerator and denominator.
y\times \frac{1}{144}g^{-6}b^{6}
Divide \frac{1}{9}g^{-6}b^{6} by 16 to get \frac{1}{144}g^{-6}b^{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}