Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}\times 9=63
Multiply y and y to get y^{2}.
y^{2}=\frac{63}{9}
Divide both sides by 9.
y^{2}=7
Divide 63 by 9 to get 7.
y=\sqrt{7} y=-\sqrt{7}
Take the square root of both sides of the equation.
y^{2}\times 9=63
Multiply y and y to get y^{2}.
y^{2}\times 9-63=0
Subtract 63 from both sides.
9y^{2}-63=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\times 9\left(-63\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and -63 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 9\left(-63\right)}}{2\times 9}
Square 0.
y=\frac{0±\sqrt{-36\left(-63\right)}}{2\times 9}
Multiply -4 times 9.
y=\frac{0±\sqrt{2268}}{2\times 9}
Multiply -36 times -63.
y=\frac{0±18\sqrt{7}}{2\times 9}
Take the square root of 2268.
y=\frac{0±18\sqrt{7}}{18}
Multiply 2 times 9.
y=\sqrt{7}
Now solve the equation y=\frac{0±18\sqrt{7}}{18} when ± is plus.
y=-\sqrt{7}
Now solve the equation y=\frac{0±18\sqrt{7}}{18} when ± is minus.
y=\sqrt{7} y=-\sqrt{7}
The equation is now solved.