Solve for y
y=\sqrt{7}\approx 2.645751311
y=-\sqrt{7}\approx -2.645751311
Graph
Share
Copied to clipboard
y^{2}\times 9=63
Multiply y and y to get y^{2}.
y^{2}=\frac{63}{9}
Divide both sides by 9.
y^{2}=7
Divide 63 by 9 to get 7.
y=\sqrt{7} y=-\sqrt{7}
Take the square root of both sides of the equation.
y^{2}\times 9=63
Multiply y and y to get y^{2}.
y^{2}\times 9-63=0
Subtract 63 from both sides.
9y^{2}-63=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\times 9\left(-63\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and -63 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 9\left(-63\right)}}{2\times 9}
Square 0.
y=\frac{0±\sqrt{-36\left(-63\right)}}{2\times 9}
Multiply -4 times 9.
y=\frac{0±\sqrt{2268}}{2\times 9}
Multiply -36 times -63.
y=\frac{0±18\sqrt{7}}{2\times 9}
Take the square root of 2268.
y=\frac{0±18\sqrt{7}}{18}
Multiply 2 times 9.
y=\sqrt{7}
Now solve the equation y=\frac{0±18\sqrt{7}}{18} when ± is plus.
y=-\sqrt{7}
Now solve the equation y=\frac{0±18\sqrt{7}}{18} when ± is minus.
y=\sqrt{7} y=-\sqrt{7}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}