Factor
\left(y+1\right)\left(y^{4}-y^{3}+y^{2}-y+1\right)y^{5}
Evaluate
y^{10}+y^{5}
Graph
Share
Copied to clipboard
y^{5}\left(yy^{4}+1\right)
Factor out y^{5}.
\left(y+1\right)\left(y^{4}-y^{3}+y^{2}-y+1\right)
Consider y^{5}+1. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 1 and q divides the leading coefficient 1. One such root is -1. Factor the polynomial by dividing it by y+1.
y^{5}\left(y+1\right)\left(y^{4}-y^{3}+y^{2}-y+1\right)
Rewrite the complete factored expression. Polynomial y^{4}-y^{3}+y^{2}-y+1 is not factored since it does not have any rational roots.
y^{10}+y^{5}
To multiply powers of the same base, add their exponents. Add 6 and 4 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}