Solve for y (complex solution)
y\in \mathrm{C}
Solve for y
y\in \mathrm{R}
Graph
Share
Copied to clipboard
y^{4}-18y^{2}+81=\left(y^{2}\right)^{2}-18y^{2}+81
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y^{2}-9\right)^{2}.
y^{4}-18y^{2}+81=y^{4}-18y^{2}+81
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
y^{4}-18y^{2}+81-y^{4}=-18y^{2}+81
Subtract y^{4} from both sides.
-18y^{2}+81=-18y^{2}+81
Combine y^{4} and -y^{4} to get 0.
-18y^{2}+81+18y^{2}=81
Add 18y^{2} to both sides.
81=81
Combine -18y^{2} and 18y^{2} to get 0.
\text{true}
Compare 81 and 81.
y\in \mathrm{C}
This is true for any y.
y^{4}-18y^{2}+81=\left(y^{2}\right)^{2}-18y^{2}+81
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y^{2}-9\right)^{2}.
y^{4}-18y^{2}+81=y^{4}-18y^{2}+81
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
y^{4}-18y^{2}+81-y^{4}=-18y^{2}+81
Subtract y^{4} from both sides.
-18y^{2}+81=-18y^{2}+81
Combine y^{4} and -y^{4} to get 0.
-18y^{2}+81+18y^{2}=81
Add 18y^{2} to both sides.
81=81
Combine -18y^{2} and 18y^{2} to get 0.
\text{true}
Compare 81 and 81.
y\in \mathrm{R}
This is true for any y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}