Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

y\left(y-9\right)
Factor out y.
y^{2}-9y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-9\right)±9}{2}
Take the square root of \left(-9\right)^{2}.
y=\frac{9±9}{2}
The opposite of -9 is 9.
y=\frac{18}{2}
Now solve the equation y=\frac{9±9}{2} when ± is plus. Add 9 to 9.
y=9
Divide 18 by 2.
y=\frac{0}{2}
Now solve the equation y=\frac{9±9}{2} when ± is minus. Subtract 9 from 9.
y=0
Divide 0 by 2.
y^{2}-9y=\left(y-9\right)y
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 9 for x_{1} and 0 for x_{2}.