Skip to main content
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

y^{2}-8y+16=-\frac{80}{9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y^{2}-8y+16-\left(-\frac{80}{9}\right)=-\frac{80}{9}-\left(-\frac{80}{9}\right)
Add \frac{80}{9} to both sides of the equation.
y^{2}-8y+16-\left(-\frac{80}{9}\right)=0
Subtracting -\frac{80}{9} from itself leaves 0.
y^{2}-8y+\frac{224}{9}=0
Subtract -\frac{80}{9} from 16.
y=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times \frac{224}{9}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and \frac{224}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-8\right)±\sqrt{64-4\times \frac{224}{9}}}{2}
Square -8.
y=\frac{-\left(-8\right)±\sqrt{64-\frac{896}{9}}}{2}
Multiply -4 times \frac{224}{9}.
y=\frac{-\left(-8\right)±\sqrt{-\frac{320}{9}}}{2}
Add 64 to -\frac{896}{9}.
y=\frac{-\left(-8\right)±\frac{8\sqrt{5}i}{3}}{2}
Take the square root of -\frac{320}{9}.
y=\frac{8±\frac{8\sqrt{5}i}{3}}{2}
The opposite of -8 is 8.
y=\frac{\frac{8\sqrt{5}i}{3}+8}{2}
Now solve the equation y=\frac{8±\frac{8\sqrt{5}i}{3}}{2} when ± is plus. Add 8 to \frac{8i\sqrt{5}}{3}.
y=\frac{4\sqrt{5}i}{3}+4
Divide 8+\frac{8i\sqrt{5}}{3} by 2.
y=\frac{-\frac{8\sqrt{5}i}{3}+8}{2}
Now solve the equation y=\frac{8±\frac{8\sqrt{5}i}{3}}{2} when ± is minus. Subtract \frac{8i\sqrt{5}}{3} from 8.
y=-\frac{4\sqrt{5}i}{3}+4
Divide 8-\frac{8i\sqrt{5}}{3} by 2.
y=\frac{4\sqrt{5}i}{3}+4 y=-\frac{4\sqrt{5}i}{3}+4
The equation is now solved.
y^{2}-8y+16=-\frac{80}{9}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\left(y-4\right)^{2}=-\frac{80}{9}
Factor y^{2}-8y+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-4\right)^{2}}=\sqrt{-\frac{80}{9}}
Take the square root of both sides of the equation.
y-4=\frac{4\sqrt{5}i}{3} y-4=-\frac{4\sqrt{5}i}{3}
Simplify.
y=\frac{4\sqrt{5}i}{3}+4 y=-\frac{4\sqrt{5}i}{3}+4
Add 4 to both sides of the equation.