Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}-64y-11520=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\left(-11520\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-64\right)±\sqrt{4096-4\left(-11520\right)}}{2}
Square -64.
y=\frac{-\left(-64\right)±\sqrt{4096+46080}}{2}
Multiply -4 times -11520.
y=\frac{-\left(-64\right)±\sqrt{50176}}{2}
Add 4096 to 46080.
y=\frac{-\left(-64\right)±224}{2}
Take the square root of 50176.
y=\frac{64±224}{2}
The opposite of -64 is 64.
y=\frac{288}{2}
Now solve the equation y=\frac{64±224}{2} when ± is plus. Add 64 to 224.
y=144
Divide 288 by 2.
y=-\frac{160}{2}
Now solve the equation y=\frac{64±224}{2} when ± is minus. Subtract 224 from 64.
y=-80
Divide -160 by 2.
y^{2}-64y-11520=\left(y-144\right)\left(y-\left(-80\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 144 for x_{1} and -80 for x_{2}.
y^{2}-64y-11520=\left(y-144\right)\left(y+80\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
x ^ 2 -64x -11520 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 64 rs = -11520
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 32 - u s = 32 + u
Two numbers r and s sum up to 64 exactly when the average of the two numbers is \frac{1}{2}*64 = 32. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(32 - u) (32 + u) = -11520
To solve for unknown quantity u, substitute these in the product equation rs = -11520
1024 - u^2 = -11520
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -11520-1024 = -12544
Simplify the expression by subtracting 1024 on both sides
u^2 = 12544 u = \pm\sqrt{12544} = \pm 112
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =32 - 112 = -80 s = 32 + 112 = 144
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.