Factor
\left(y-27\right)\left(y-12\right)
Evaluate
\left(y-27\right)\left(y-12\right)
Graph
Share
Copied to clipboard
a+b=-39 ab=1\times 324=324
Factor the expression by grouping. First, the expression needs to be rewritten as y^{2}+ay+by+324. To find a and b, set up a system to be solved.
-1,-324 -2,-162 -3,-108 -4,-81 -6,-54 -9,-36 -12,-27 -18,-18
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 324.
-1-324=-325 -2-162=-164 -3-108=-111 -4-81=-85 -6-54=-60 -9-36=-45 -12-27=-39 -18-18=-36
Calculate the sum for each pair.
a=-27 b=-12
The solution is the pair that gives sum -39.
\left(y^{2}-27y\right)+\left(-12y+324\right)
Rewrite y^{2}-39y+324 as \left(y^{2}-27y\right)+\left(-12y+324\right).
y\left(y-27\right)-12\left(y-27\right)
Factor out y in the first and -12 in the second group.
\left(y-27\right)\left(y-12\right)
Factor out common term y-27 by using distributive property.
y^{2}-39y+324=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-39\right)±\sqrt{\left(-39\right)^{2}-4\times 324}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-39\right)±\sqrt{1521-4\times 324}}{2}
Square -39.
y=\frac{-\left(-39\right)±\sqrt{1521-1296}}{2}
Multiply -4 times 324.
y=\frac{-\left(-39\right)±\sqrt{225}}{2}
Add 1521 to -1296.
y=\frac{-\left(-39\right)±15}{2}
Take the square root of 225.
y=\frac{39±15}{2}
The opposite of -39 is 39.
y=\frac{54}{2}
Now solve the equation y=\frac{39±15}{2} when ± is plus. Add 39 to 15.
y=27
Divide 54 by 2.
y=\frac{24}{2}
Now solve the equation y=\frac{39±15}{2} when ± is minus. Subtract 15 from 39.
y=12
Divide 24 by 2.
y^{2}-39y+324=\left(y-27\right)\left(y-12\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 27 for x_{1} and 12 for x_{2}.
x ^ 2 -39x +324 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 39 rs = 324
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{39}{2} - u s = \frac{39}{2} + u
Two numbers r and s sum up to 39 exactly when the average of the two numbers is \frac{1}{2}*39 = \frac{39}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{39}{2} - u) (\frac{39}{2} + u) = 324
To solve for unknown quantity u, substitute these in the product equation rs = 324
\frac{1521}{4} - u^2 = 324
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 324-\frac{1521}{4} = -\frac{225}{4}
Simplify the expression by subtracting \frac{1521}{4} on both sides
u^2 = \frac{225}{4} u = \pm\sqrt{\frac{225}{4}} = \pm \frac{15}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{39}{2} - \frac{15}{2} = 12 s = \frac{39}{2} + \frac{15}{2} = 27
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}