Solve for y
y = \frac{\sqrt{161} + 3}{2} \approx 7.84428877
y=\frac{3-\sqrt{161}}{2}\approx -4.84428877
Graph
Share
Copied to clipboard
y^{2}-3y-18=20
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y^{2}-3y-18-20=20-20
Subtract 20 from both sides of the equation.
y^{2}-3y-18-20=0
Subtracting 20 from itself leaves 0.
y^{2}-3y-38=0
Subtract 20 from -18.
y=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-38\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and -38 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-3\right)±\sqrt{9-4\left(-38\right)}}{2}
Square -3.
y=\frac{-\left(-3\right)±\sqrt{9+152}}{2}
Multiply -4 times -38.
y=\frac{-\left(-3\right)±\sqrt{161}}{2}
Add 9 to 152.
y=\frac{3±\sqrt{161}}{2}
The opposite of -3 is 3.
y=\frac{\sqrt{161}+3}{2}
Now solve the equation y=\frac{3±\sqrt{161}}{2} when ± is plus. Add 3 to \sqrt{161}.
y=\frac{3-\sqrt{161}}{2}
Now solve the equation y=\frac{3±\sqrt{161}}{2} when ± is minus. Subtract \sqrt{161} from 3.
y=\frac{\sqrt{161}+3}{2} y=\frac{3-\sqrt{161}}{2}
The equation is now solved.
y^{2}-3y-18=20
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
y^{2}-3y-18-\left(-18\right)=20-\left(-18\right)
Add 18 to both sides of the equation.
y^{2}-3y=20-\left(-18\right)
Subtracting -18 from itself leaves 0.
y^{2}-3y=38
Subtract -18 from 20.
y^{2}-3y+\left(-\frac{3}{2}\right)^{2}=38+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-3y+\frac{9}{4}=38+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-3y+\frac{9}{4}=\frac{161}{4}
Add 38 to \frac{9}{4}.
\left(y-\frac{3}{2}\right)^{2}=\frac{161}{4}
Factor y^{2}-3y+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{3}{2}\right)^{2}}=\sqrt{\frac{161}{4}}
Take the square root of both sides of the equation.
y-\frac{3}{2}=\frac{\sqrt{161}}{2} y-\frac{3}{2}=-\frac{\sqrt{161}}{2}
Simplify.
y=\frac{\sqrt{161}+3}{2} y=\frac{3-\sqrt{161}}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}