Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

y\left(y-25\right)
Factor out y.
y^{2}-25y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-25\right)±25}{2}
Take the square root of \left(-25\right)^{2}.
y=\frac{25±25}{2}
The opposite of -25 is 25.
y=\frac{50}{2}
Now solve the equation y=\frac{25±25}{2} when ± is plus. Add 25 to 25.
y=25
Divide 50 by 2.
y=\frac{0}{2}
Now solve the equation y=\frac{25±25}{2} when ± is minus. Subtract 25 from 25.
y=0
Divide 0 by 2.
y^{2}-25y=\left(y-25\right)y
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 25 for x_{1} and 0 for x_{2}.