Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y\left(y-2\right)=0
Factor out y.
y=0 y=2
To find equation solutions, solve y=0 and y-2=0.
y^{2}-2y=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2\right)±2}{2}
Take the square root of \left(-2\right)^{2}.
y=\frac{2±2}{2}
The opposite of -2 is 2.
y=\frac{4}{2}
Now solve the equation y=\frac{2±2}{2} when ± is plus. Add 2 to 2.
y=2
Divide 4 by 2.
y=\frac{0}{2}
Now solve the equation y=\frac{2±2}{2} when ± is minus. Subtract 2 from 2.
y=0
Divide 0 by 2.
y=2 y=0
The equation is now solved.
y^{2}-2y=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
y^{2}-2y+1=1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\left(y-1\right)^{2}=1
Factor y^{2}-2y+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-1\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
y-1=1 y-1=-1
Simplify.
y=2 y=0
Add 1 to both sides of the equation.