Solve for y
y = \frac{3 \sqrt{4649} + 4}{25} \approx 8.342029088
y=\frac{4-3\sqrt{4649}}{25}\approx -8.022029088
Graph
Share
Copied to clipboard
25y^{2}-8y-1673=0
Multiply both sides of the equation by 25.
y=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 25\left(-1673\right)}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -8 for b, and -1673 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-8\right)±\sqrt{64-4\times 25\left(-1673\right)}}{2\times 25}
Square -8.
y=\frac{-\left(-8\right)±\sqrt{64-100\left(-1673\right)}}{2\times 25}
Multiply -4 times 25.
y=\frac{-\left(-8\right)±\sqrt{64+167300}}{2\times 25}
Multiply -100 times -1673.
y=\frac{-\left(-8\right)±\sqrt{167364}}{2\times 25}
Add 64 to 167300.
y=\frac{-\left(-8\right)±6\sqrt{4649}}{2\times 25}
Take the square root of 167364.
y=\frac{8±6\sqrt{4649}}{2\times 25}
The opposite of -8 is 8.
y=\frac{8±6\sqrt{4649}}{50}
Multiply 2 times 25.
y=\frac{6\sqrt{4649}+8}{50}
Now solve the equation y=\frac{8±6\sqrt{4649}}{50} when ± is plus. Add 8 to 6\sqrt{4649}.
y=\frac{3\sqrt{4649}+4}{25}
Divide 8+6\sqrt{4649} by 50.
y=\frac{8-6\sqrt{4649}}{50}
Now solve the equation y=\frac{8±6\sqrt{4649}}{50} when ± is minus. Subtract 6\sqrt{4649} from 8.
y=\frac{4-3\sqrt{4649}}{25}
Divide 8-6\sqrt{4649} by 50.
y=\frac{3\sqrt{4649}+4}{25} y=\frac{4-3\sqrt{4649}}{25}
The equation is now solved.
25y^{2}-8y-1673=0
Multiply both sides of the equation by 25.
25y^{2}-8y=1673
Add 1673 to both sides. Anything plus zero gives itself.
\frac{25y^{2}-8y}{25}=\frac{1673}{25}
Divide both sides by 25.
y^{2}-\frac{8}{25}y=\frac{1673}{25}
Dividing by 25 undoes the multiplication by 25.
y^{2}-\frac{8}{25}y+\left(-\frac{4}{25}\right)^{2}=\frac{1673}{25}+\left(-\frac{4}{25}\right)^{2}
Divide -\frac{8}{25}, the coefficient of the x term, by 2 to get -\frac{4}{25}. Then add the square of -\frac{4}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{8}{25}y+\frac{16}{625}=\frac{1673}{25}+\frac{16}{625}
Square -\frac{4}{25} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{8}{25}y+\frac{16}{625}=\frac{41841}{625}
Add \frac{1673}{25} to \frac{16}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{4}{25}\right)^{2}=\frac{41841}{625}
Factor y^{2}-\frac{8}{25}y+\frac{16}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{4}{25}\right)^{2}}=\sqrt{\frac{41841}{625}}
Take the square root of both sides of the equation.
y-\frac{4}{25}=\frac{3\sqrt{4649}}{25} y-\frac{4}{25}=-\frac{3\sqrt{4649}}{25}
Simplify.
y=\frac{3\sqrt{4649}+4}{25} y=\frac{4-3\sqrt{4649}}{25}
Add \frac{4}{25} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}