Skip to main content
Solve for p (complex solution)
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for p
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}=2px\left(1+\lambda \left(-5\right)\right)
Subtract 6 from 1 to get -5.
y^{2}=2px-10\lambda px
Use the distributive property to multiply 2px by 1+\lambda \left(-5\right).
2px-10\lambda px=y^{2}
Swap sides so that all variable terms are on the left hand side.
\left(2x-10\lambda x\right)p=y^{2}
Combine all terms containing p.
\left(2x-10x\lambda \right)p=y^{2}
The equation is in standard form.
\frac{\left(2x-10x\lambda \right)p}{2x-10x\lambda }=\frac{y^{2}}{2x-10x\lambda }
Divide both sides by -10x\lambda +2x.
p=\frac{y^{2}}{2x-10x\lambda }
Dividing by -10x\lambda +2x undoes the multiplication by -10x\lambda +2x.
p=\frac{y^{2}}{2x\left(1-5\lambda \right)}
Divide y^{2} by -10x\lambda +2x.
y^{2}=2px\left(1+\lambda \left(-5\right)\right)
Subtract 6 from 1 to get -5.
y^{2}=2px-10\lambda px
Use the distributive property to multiply 2px by 1+\lambda \left(-5\right).
2px-10\lambda px=y^{2}
Swap sides so that all variable terms are on the left hand side.
\left(2p-10\lambda p\right)x=y^{2}
Combine all terms containing x.
\left(2p-10p\lambda \right)x=y^{2}
The equation is in standard form.
\frac{\left(2p-10p\lambda \right)x}{2p-10p\lambda }=\frac{y^{2}}{2p-10p\lambda }
Divide both sides by 2p-10p\lambda .
x=\frac{y^{2}}{2p-10p\lambda }
Dividing by 2p-10p\lambda undoes the multiplication by 2p-10p\lambda .
x=\frac{y^{2}}{2p\left(1-5\lambda \right)}
Divide y^{2} by 2p-10p\lambda .
y^{2}=2px\left(1+\lambda \left(-5\right)\right)
Subtract 6 from 1 to get -5.
y^{2}=2px-10\lambda px
Use the distributive property to multiply 2px by 1+\lambda \left(-5\right).
2px-10\lambda px=y^{2}
Swap sides so that all variable terms are on the left hand side.
\left(2x-10\lambda x\right)p=y^{2}
Combine all terms containing p.
\left(2x-10x\lambda \right)p=y^{2}
The equation is in standard form.
\frac{\left(2x-10x\lambda \right)p}{2x-10x\lambda }=\frac{y^{2}}{2x-10x\lambda }
Divide both sides by -10x\lambda +2x.
p=\frac{y^{2}}{2x-10x\lambda }
Dividing by -10x\lambda +2x undoes the multiplication by -10x\lambda +2x.
p=\frac{y^{2}}{2x\left(1-5\lambda \right)}
Divide y^{2} by -10x\lambda +2x.
y^{2}=2px\left(1+\lambda \left(-5\right)\right)
Subtract 6 from 1 to get -5.
y^{2}=2px-10\lambda px
Use the distributive property to multiply 2px by 1+\lambda \left(-5\right).
2px-10\lambda px=y^{2}
Swap sides so that all variable terms are on the left hand side.
\left(2p-10\lambda p\right)x=y^{2}
Combine all terms containing x.
\left(2p-10p\lambda \right)x=y^{2}
The equation is in standard form.
\frac{\left(2p-10p\lambda \right)x}{2p-10p\lambda }=\frac{y^{2}}{2p-10p\lambda }
Divide both sides by 2p-10p\lambda .
x=\frac{y^{2}}{2p-10p\lambda }
Dividing by 2p-10p\lambda undoes the multiplication by 2p-10p\lambda .
x=\frac{y^{2}}{2p\left(1-5\lambda \right)}
Divide y^{2} by 2p-10p\lambda .