y ^ { 2 } = 2 p x ( 1 + \lambda ( 1 - 6 )
Solve for p (complex solution)
\left\{\begin{matrix}p=\frac{y^{2}}{2x\left(1-5\lambda \right)}\text{, }&\lambda \neq \frac{1}{5}\text{ and }x\neq 0\\p\in \mathrm{C}\text{, }&\left(x=0\text{ or }\lambda =\frac{1}{5}\right)\text{ and }y=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{y^{2}}{2p\left(1-5\lambda \right)}\text{, }&\lambda \neq \frac{1}{5}\text{ and }p\neq 0\\x\in \mathrm{C}\text{, }&\left(p=0\text{ or }\lambda =\frac{1}{5}\right)\text{ and }y=0\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=\frac{y^{2}}{2x\left(1-5\lambda \right)}\text{, }&\lambda \neq \frac{1}{5}\text{ and }x\neq 0\\p\in \mathrm{R}\text{, }&\left(x=0\text{ or }\lambda =\frac{1}{5}\right)\text{ and }y=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{y^{2}}{2p\left(1-5\lambda \right)}\text{, }&\lambda \neq \frac{1}{5}\text{ and }p\neq 0\\x\in \mathrm{R}\text{, }&\left(p=0\text{ or }\lambda =\frac{1}{5}\right)\text{ and }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y^{2}=2px\left(1+\lambda \left(-5\right)\right)
Subtract 6 from 1 to get -5.
y^{2}=2px-10\lambda px
Use the distributive property to multiply 2px by 1+\lambda \left(-5\right).
2px-10\lambda px=y^{2}
Swap sides so that all variable terms are on the left hand side.
\left(2x-10\lambda x\right)p=y^{2}
Combine all terms containing p.
\left(2x-10x\lambda \right)p=y^{2}
The equation is in standard form.
\frac{\left(2x-10x\lambda \right)p}{2x-10x\lambda }=\frac{y^{2}}{2x-10x\lambda }
Divide both sides by -10x\lambda +2x.
p=\frac{y^{2}}{2x-10x\lambda }
Dividing by -10x\lambda +2x undoes the multiplication by -10x\lambda +2x.
p=\frac{y^{2}}{2x\left(1-5\lambda \right)}
Divide y^{2} by -10x\lambda +2x.
y^{2}=2px\left(1+\lambda \left(-5\right)\right)
Subtract 6 from 1 to get -5.
y^{2}=2px-10\lambda px
Use the distributive property to multiply 2px by 1+\lambda \left(-5\right).
2px-10\lambda px=y^{2}
Swap sides so that all variable terms are on the left hand side.
\left(2p-10\lambda p\right)x=y^{2}
Combine all terms containing x.
\left(2p-10p\lambda \right)x=y^{2}
The equation is in standard form.
\frac{\left(2p-10p\lambda \right)x}{2p-10p\lambda }=\frac{y^{2}}{2p-10p\lambda }
Divide both sides by 2p-10p\lambda .
x=\frac{y^{2}}{2p-10p\lambda }
Dividing by 2p-10p\lambda undoes the multiplication by 2p-10p\lambda .
x=\frac{y^{2}}{2p\left(1-5\lambda \right)}
Divide y^{2} by 2p-10p\lambda .
y^{2}=2px\left(1+\lambda \left(-5\right)\right)
Subtract 6 from 1 to get -5.
y^{2}=2px-10\lambda px
Use the distributive property to multiply 2px by 1+\lambda \left(-5\right).
2px-10\lambda px=y^{2}
Swap sides so that all variable terms are on the left hand side.
\left(2x-10\lambda x\right)p=y^{2}
Combine all terms containing p.
\left(2x-10x\lambda \right)p=y^{2}
The equation is in standard form.
\frac{\left(2x-10x\lambda \right)p}{2x-10x\lambda }=\frac{y^{2}}{2x-10x\lambda }
Divide both sides by -10x\lambda +2x.
p=\frac{y^{2}}{2x-10x\lambda }
Dividing by -10x\lambda +2x undoes the multiplication by -10x\lambda +2x.
p=\frac{y^{2}}{2x\left(1-5\lambda \right)}
Divide y^{2} by -10x\lambda +2x.
y^{2}=2px\left(1+\lambda \left(-5\right)\right)
Subtract 6 from 1 to get -5.
y^{2}=2px-10\lambda px
Use the distributive property to multiply 2px by 1+\lambda \left(-5\right).
2px-10\lambda px=y^{2}
Swap sides so that all variable terms are on the left hand side.
\left(2p-10\lambda p\right)x=y^{2}
Combine all terms containing x.
\left(2p-10p\lambda \right)x=y^{2}
The equation is in standard form.
\frac{\left(2p-10p\lambda \right)x}{2p-10p\lambda }=\frac{y^{2}}{2p-10p\lambda }
Divide both sides by 2p-10p\lambda .
x=\frac{y^{2}}{2p-10p\lambda }
Dividing by 2p-10p\lambda undoes the multiplication by 2p-10p\lambda .
x=\frac{y^{2}}{2p\left(1-5\lambda \right)}
Divide y^{2} by 2p-10p\lambda .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}