Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}-18y=0
Subtract 18y from both sides.
y\left(y-18\right)=0
Factor out y.
y=0 y=18
To find equation solutions, solve y=0 and y-18=0.
y^{2}-18y=0
Subtract 18y from both sides.
y=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -18 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-18\right)±18}{2}
Take the square root of \left(-18\right)^{2}.
y=\frac{18±18}{2}
The opposite of -18 is 18.
y=\frac{36}{2}
Now solve the equation y=\frac{18±18}{2} when ± is plus. Add 18 to 18.
y=18
Divide 36 by 2.
y=\frac{0}{2}
Now solve the equation y=\frac{18±18}{2} when ± is minus. Subtract 18 from 18.
y=0
Divide 0 by 2.
y=18 y=0
The equation is now solved.
y^{2}-18y=0
Subtract 18y from both sides.
y^{2}-18y+\left(-9\right)^{2}=\left(-9\right)^{2}
Divide -18, the coefficient of the x term, by 2 to get -9. Then add the square of -9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-18y+81=81
Square -9.
\left(y-9\right)^{2}=81
Factor y^{2}-18y+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-9\right)^{2}}=\sqrt{81}
Take the square root of both sides of the equation.
y-9=9 y-9=-9
Simplify.
y=18 y=0
Add 9 to both sides of the equation.