Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}-10y=-20
Subtract 10y from both sides.
y^{2}-10y+20=0
Add 20 to both sides.
y=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 20}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-10\right)±\sqrt{100-4\times 20}}{2}
Square -10.
y=\frac{-\left(-10\right)±\sqrt{100-80}}{2}
Multiply -4 times 20.
y=\frac{-\left(-10\right)±\sqrt{20}}{2}
Add 100 to -80.
y=\frac{-\left(-10\right)±2\sqrt{5}}{2}
Take the square root of 20.
y=\frac{10±2\sqrt{5}}{2}
The opposite of -10 is 10.
y=\frac{2\sqrt{5}+10}{2}
Now solve the equation y=\frac{10±2\sqrt{5}}{2} when ± is plus. Add 10 to 2\sqrt{5}.
y=\sqrt{5}+5
Divide 10+2\sqrt{5} by 2.
y=\frac{10-2\sqrt{5}}{2}
Now solve the equation y=\frac{10±2\sqrt{5}}{2} when ± is minus. Subtract 2\sqrt{5} from 10.
y=5-\sqrt{5}
Divide 10-2\sqrt{5} by 2.
y=\sqrt{5}+5 y=5-\sqrt{5}
The equation is now solved.
y^{2}-10y=-20
Subtract 10y from both sides.
y^{2}-10y+\left(-5\right)^{2}=-20+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-10y+25=-20+25
Square -5.
y^{2}-10y+25=5
Add -20 to 25.
\left(y-5\right)^{2}=5
Factor y^{2}-10y+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-5\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
y-5=\sqrt{5} y-5=-\sqrt{5}
Simplify.
y=\sqrt{5}+5 y=5-\sqrt{5}
Add 5 to both sides of the equation.