Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}+14y=0
Add 14y to both sides.
y\left(y+14\right)=0
Factor out y.
y=0 y=-14
To find equation solutions, solve y=0 and y+14=0.
y^{2}+14y=0
Add 14y to both sides.
y=\frac{-14±\sqrt{14^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 14 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-14±14}{2}
Take the square root of 14^{2}.
y=\frac{0}{2}
Now solve the equation y=\frac{-14±14}{2} when ± is plus. Add -14 to 14.
y=0
Divide 0 by 2.
y=-\frac{28}{2}
Now solve the equation y=\frac{-14±14}{2} when ± is minus. Subtract 14 from -14.
y=-14
Divide -28 by 2.
y=0 y=-14
The equation is now solved.
y^{2}+14y=0
Add 14y to both sides.
y^{2}+14y+7^{2}=7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+14y+49=49
Square 7.
\left(y+7\right)^{2}=49
Factor y^{2}+14y+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+7\right)^{2}}=\sqrt{49}
Take the square root of both sides of the equation.
y+7=7 y+7=-7
Simplify.
y=0 y=-14
Subtract 7 from both sides of the equation.