Solve for x
x=-\frac{8y^{2}}{9}
Solve for y (complex solution)
y=-\frac{3i\sqrt{2x}}{4}
y=\frac{3i\sqrt{2x}}{4}
Solve for y
y=\frac{3\sqrt{-2x}}{4}
y=-\frac{3\sqrt{-2x}}{4}\text{, }x\leq 0
Graph
Share
Copied to clipboard
-\frac{9}{8}x=y^{2}
Swap sides so that all variable terms are on the left hand side.
\frac{-\frac{9}{8}x}{-\frac{9}{8}}=\frac{y^{2}}{-\frac{9}{8}}
Divide both sides of the equation by -\frac{9}{8}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y^{2}}{-\frac{9}{8}}
Dividing by -\frac{9}{8} undoes the multiplication by -\frac{9}{8}.
x=-\frac{8y^{2}}{9}
Divide y^{2} by -\frac{9}{8} by multiplying y^{2} by the reciprocal of -\frac{9}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}